PHYSICS

by Aristotle
350 BC
translated by R. P. Hardie and R. K. Gaye

Book II

1

Of things that exist, some exist by nature, some from other causes.  'By nature' the animals and their parts exist, and the plants and the simple bodies (earth, fire, air, water)-for we say that these and the like exist 'by nature'.

  All the things mentioned present a feature in which they differ from things which are not constituted by nature. Each of them has within itself a principle of motion and of stationariness (in respect of place, or of growth and decrease, or by way of alteration). On the other hand, a bed and a coat and anything else of that sort, qua receiving these designations i.e. in so far as they are products of art-have no innate impulse to change. But in so far as they happen to be composed of stone or of earth or of a mixture of the two, they do have such an impulse, and just to that extent which seems to indicate that nature is a source or cause of being moved and of being at rest in that to which it belongs primarily, in virtue of itself and not in virtue of a concomitant attribute…

  'Nature' then is what has been stated. Things 'have a nature'which have a principle of this kind. Each of them is a substance; for it is a subject, and nature always implies a subject in which it inheres.

  The term 'according to nature' is applied to all these things and also to the attributes which belong to them in virtue of what they are, for instance the property of fire to be carried upwards-which is not a 'nature' nor 'has a nature' but is 'by nature' or 'according to nature'…

  This then is one account of 'nature', namely that it is the immediate material substratum of things which have in themselves a principle of motion or change.

  Another account is that 'nature' is the shape or form which is specified in the definition of the thing.

  For the word 'nature' is applied to what is according to nature and the natural in the same way as 'art' is applied to what is artistic or a work of art. We should not say in the latter case that there is anything artistic about a thing, if it is a bed only potentially, not yet having the form of a bed; nor should we call it a work of art. The same is true of natural compounds. What is potentially flesh or bone has not yet its own 'nature', and does not exist until it receives the form specified in the definition, which we name in defining what flesh or bone is. Thus in the second sense of 'nature' it would be the shape or form (not separable except in statement) of things which have in themselves a source of motion. (The combination of the two, e.g. man, is not 'nature' but 'by nature' or 'natural'.)

  The form indeed is 'nature' rather than the matter; for a thing is more properly said to be what it is when it has attained to fulfilment than when it exists potentially…

  'Shape' and 'nature', it should be added, are in two senses. For the privation too is in a way form. But whether in unqualified coming to be there is privation, i.e. a contrary to what comes to be, we must consider later…

3

Now that we have established these distinctions, we must proceed to consider causes, their character and number. Knowledge is the object of our inquiry, and men do not think they know a thing till they have grasped the 'why' of (which is to grasp its primary cause). So clearly we too must do this as regards both coming to be and passing away and every kind of physical change, in order that, knowing their principles, we may try to refer to these principles each of our problems.

 In one sense, then, (1) that out of which a thing comes to be and which persists, is called 'cause', e.g. the bronze of the statue, the silver of the bowl, and the genera of which the bronze and the silver are species.

  In another sense (2) the form or the archetype, i.e. the statement of the essence, and its genera, are called 'causes' (e.g. of the octave the relation of 2:1, and generally number), and the parts in the definition.

  Again (3) the primary source of the change or coming to rest; e.g. the man who gave advice is a cause, the father is cause of the child, and generally what makes of what is made and what causes change of what is changed.

  Again (4) in the sense of end or 'that for the sake of which' a thing is done, e.g. health is the cause of walking about. ('Why is he walking about?' we say. 'To be healthy', and, having said that, we think we have assigned the cause.) The same is true also of all the intermediate steps which are brought about through the action of something else as means towards the end, e.g. reduction of flesh, purging, drugs, or surgical instruments are means towards health. All these things are 'for the sake of' the end, though they differ from one another in that some are activities, others instruments.

  This then perhaps exhausts the number of ways in which the term 'cause' is used…

Book III

1

NATURE has been defined as a 'principle of motion and change', and it is the subject of our inquiry. We must therefore see that we understand the meaning of 'motion'; for if it were unknown, the meaning of 'nature' too would be unknown…

  To begin then, as we said, with motion.

  We may start by distinguishing (1) what exists in a state of fulfilment only, (2) what exists as potential, (3) what exists as potential and also in fulfilment-one being a 'this', another 'so much', a third 'such', and similarly in each of the other modes of the predication of being.

  Further, the word 'relative' is used with reference to (1) excess and defect, (2) agent and patient and generally what can move and what can be moved. For 'what can cause movement' is relative to 'what can be moved', and vice versa.

  Again, there is no such thing as motion over and above the things. It is always with respect to substance or to quantity or to quality or to place that what changes changes. But it is impossible, as we assert, to find anything common to these which is neither 'this' nor quantum nor quale nor any of the other predicates. Hence neither will motion and change have reference to something over and above the things mentioned, for there is nothing over and above them.

  Now each of these belongs to all its subjects in either of two ways: namely (1) substance-the one is positive form, the other privation; (2) in quality, white and black; (3) in quantity, complete and incomplete; (4) in respect of locomotion, upwards and downwards or light and heavy. Hence there are as many types of motion or change as there are meanings of the word 'is'.

  We have now before us the distinctions in the various classes of being between what is full real and what is potential.

 Def. The fulfilment of what exists potentially, in so far as it exists potentially, is motion-namely, of what is alterable qua alterable, alteration: of what can be increased and its opposite what can be decreased (there is no common name), increase and decrease: of what can come to be and can pass away, coming to he and passing away: of what can be carried along, locomotion.

  Examples will elucidate this definition of motion. When the buildable, in so far as it is just that, is fully real, it is being built, and this is building. Similarly, learning, doctoring, rolling, leaping, ripening, ageing.

The same thing, if it is of a certain kind, can be both potential and fully real, not indeed at the same time or not in the same respect, but e.g. potentially hot and actually cold. Hence at once such things will act and be acted on by one another in many ways: each of them will be capable at the same time of causing alteration and of being altered. Hence, too, what effects motion as a physical agent can be moved: when a thing of this kind causes motion, it is itself also moved. This, indeed, has led some people to suppose that every mover is moved. But this question depends on another set of arguments, and the truth will be made clear later. is possible for a thing to cause motion, though it is itself incapable of being moved.

  It is the fulfilment of what is potential when it is already fully real and operates not as itself but as movable, that is motion. What I mean by 'as' is this: Bronze is potentially a statue. But it is not the fulfilment of bronze as bronze which is motion. For 'to be bronze' and 'to be a certain potentiality' are not the same.

  If they were identical without qualification, i.e. in definition, the fulfilment of bronze as bronze would have been motion. But they are not the same, as has been said. (This is obvious in contraries. 'To be capable of health' and 'to be capable of illness' are not the same, for if they were there would be no difference between being ill and being well. Yet the subject both of health and of sickness-whether it is humour or blood-is one and the same.)

  We can distinguish, then, between the two-just as, to give another example, 'colour' and visible' are different-and clearly it is the fulfilment of what is potential as potential that is motion. So this, precisely, is motion.

  Further it is evident that motion is an attribute of a thing just when it is fully real in this way, and neither before nor after. For each thing of this kind is capable of being at one time actual, at another not. Take for instance the buildable as buildable. The actuality of the buildable as buildable is the process of building. For the actuality of the buildable must be either this or the house. But when there is a house, the buildable is no longer buildable. On the other hand, it is the buildable which is being built. The process then of being built must be the kind of actuality required But building is a kind of motion, and the same account will apply to the other kinds also…

Book IV

1

THE physicist must have a knowledge of Place, too, as well as of the infinite-namely, whether there is such a thing or not, and the manner of its existence and what it is-both because all suppose that things which exist are somewhere (the non-existent is nowhere--where is the goat-stag or the sphinx?), and because 'motion' in its most general and primary sense is change of place, which we call 'locomotion'.

  The question, what is place? presents many difficulties. An examination of all the relevant facts seems to lead to divergent conclusions. Moreover, we have inherited nothing from previous thinkers, whether in the way of a statement of difficulties or of a solution.

  The existence of place is held to be obvious from the fact of mutual replacement. Where water now is, there in turn, when the water has gone out as from a vessel, air is present. When therefore another body occupies this same place, the place is thought to be different from all the bodies which come to be in it and replace one another. What now contains air formerly contained water, so that clearly the place or space into which and out of which they passed was something different from both.

 Further, the typical locomotions of the elementary natural bodies-namely, fire, earth, and the like-show not only that place is something, but also that it exerts a certain influence. Each is carried to its own place, if it is not hindered, the one up, the other down. Now these are regions or kinds of place-up and down and the rest of the six directions. Nor do such distinctions (up and down and right and left, &c.) hold only in relation to us. To us they are not always the same but change with the direction in which we are turned: that is why the same thing may be both right and left, up and down, before and behind. But in nature each is distinct, taken apart by itself. It is not every chance direction which is 'up', but where fire and what is light are carried; similarly, too, 'down' is not any chance direction but where what has weight and what is made of earth are carried-the implication being that these places do not differ merely in relative position, but also as possessing distinct potencies. This is made plain also by the objects studied by mathematics. Though they have no real place, they nevertheless, in respect of their position relatively to us, have a right and left as attributes ascribed to them only in consequence of their relative position, not having by nature these various characteristics. Again, the theory that the void exists involves the existence of place: for one would define void as place bereft of body.

  These considerations then would lead us to suppose that place is something distinct from bodies, and that every sensible body is in place. Hesiod too might be held to have given a correct account of it when he made chaos first. At least he says:

'First of all things came chaos to being, then broad-breasted earth,'
implying that things need to have space first, because he thought, with most people, that everything is somewhere and in place. If this is its nature, the potency of place must be a marvellous thing, and take precedence of all other things. For that without which nothing else can exist, while it can exist without the others, must needs be first; for place does not pass out of existence when the things in it are annihilated.

  True, but even if we suppose its existence settled, the question of its nature presents difficulty-whether it is some sort of 'bulk' of body or some entity other than that, for we must first determine its genus.

(1) Now it has three dimensions, length, breadth, depth, the dimensions by which all body also is bounded. But the place cannot be body; for if it were there would be two bodies in the same place.

  (2) Further, if body has a place and space, clearly so too have surface and the other limits of body; for the same statement will apply to them: where the bounding planes of the water were, there in turn will be those of the air. But when we come to a point we cannot make a distinction between it and its place. Hence if the place of a point is not different from the point, no more will that of any of the others be different, and place will not be something different from each of them.

  (3) What in the world then are we to suppose place to be? If it has the sort of nature described, it cannot be an element or composed of elements, whether these be corporeal or incorporeal: for while it has size, it has not body. But the elements of sensible bodies are bodies, while nothing that has size results from a combination of intelligible elements.

  (4) Also we may ask: of what in things is space the cause? None of the four modes of causation can be ascribed to it. It is neither in the sense of the matter of existents (for nothing is composed of it), nor as the form and definition of things, nor as end, nor does it move existents.

  (5) Further, too, if it is itself an existent, where will it be? Zeno's difficulty demands an explanation: for if everything that exists has a place, place too will have a place, and so on ad infinitum.

(6) Again, just as every body is in place, so, too, every place has a body in it. What then shall we say about growing things? It follows from these premisses that their place must grow with them, if their place is neither less nor greater than they are.

  By asking these questions, then, we must raise the whole problem about place-not only as to what it is, but even whether there is such a thing.

2

We may distinguish generally between predicating B of A because it (A) is itself, and because it is something else; and particularly between place which is common and in which all bodies are, and the special place occupied primarily by each. I mean, for instance, that you are now in the heavens because you are in the air and it is in the heavens; and you are in the air because you are on the earth; and similarly on the earth because you are in this place which contains no more than you.

  Now if place is what primarily contains each body, it would be a limit, so that the place would be the form or shape of each body by which the magnitude or the matter of the magnitude is defined: for this is the limit of each body.

  If, then, we look at the question in this way the place of a thing is its form. But, if we regard the place as the extension of the magnitude, it is the matter. For this is different from the magnitude: it is what is contained and defined by the form, as by a bounding plane. Matter or the indeterminate is of this nature; when the boundary and attributes of a sphere are taken away, nothing but the matter is left…

  In view of these facts we should naturally expect to find difficulty in determining what place is, if indeed it is one of these two things, matter or form. They demand a very close scrutiny, especially as it is not easy to recognize them apart.

  But it is at any rate not difficult to see that place cannot be either of them. The form and the matter are not separate from the thing, whereas the place can be separated. As we pointed out, where air was, water in turn comes to be, the one replacing the other; and similarly with other bodies. Hence the place of a thing is neither a part nor a state of it, but is separable from it. For place is supposed to be something like a vessel-the vessel being a transportable place. But the vessel is no part of the thing.

  In so far then as it is separable from the thing, it is not the form: qua containing, it is different from the matter.

  Also it is held that what is anywhere is both itself something and that there is a different thing outside it…

  Further, how could a body be carried to its own place, if place was the matter or the form? It is impossible that what has no reference to motion or the distinction of up and down can be place. So place must be looked for among things which have these characteristics.

  If the place is in the thing (it must be if it is either shape or matter) place will have a place: for both the form and the indeterminate undergo change and motion along with the thing, and are not always in the same place, but are where the thing is. Hence the place will have a place.

  Further, when water is produced from air, the place has been destroyed, for the resulting body is not in the same place. Whatsort of destruction then is that?

  This concludes my statement of the reasons why space must be something, and again of the difficulties that may be raised about its essential nature…

4

What then after all is place? The answer to this question may be elucidated as follows.

  Let us take for granted about it the various characteristics which are supposed correctly to belong to it essentially. We assume then-

  (1) Place is what contains that of which it is the place.

  (2) Place is no part of the thing.

  (3) The immediate place of a thing is neither less nor greater than the thing.

  (4) Place can be left behind by the thing and is separable. In addition:

  (5) All place admits of the distinction of up and down, and each of the bodies is naturally carried to its appropriate place and rests there, and this makes the place either up or down.

  Having laid these foundations, we must complete the theory. We ought to try to make our investigation such as will render an account of place, and will not only solve the difficulties connected with it, but will also show that the attributes supposed to belong to it do really belong to it, and further will make clear the cause of the trouble and of the difficulties about it. Such is the most satisfactory kind of exposition.

  First then we must understand that place would not have been thought of, if there had not been a special kind of motion, namely that with respect to place. It is chiefly for this reason that we suppose the heaven also to be in place, because it is in constant movement. Of this kind of change there are two species-locomotion on the one hand and, on the other, increase and diminution. For these too involve variation of place: what was then in this place has now in turn changed to what is larger or smaller.

  Again, when we say a thing is 'moved', the predicate either (1) belongs to it actually, in virtue of its own nature, or (2) in virtue of something conjoined with it. In the latter case it may be either (a) something which by its own nature is capable of being moved, e.g. the parts of the body or the nail in the ship, or (b) something which is not in itself capable of being moved, but is always moved through its conjunction with something else, as 'whiteness' or 'science'. These have changed their place only because the subjects to which they belong do so.

  We say that a thing is in the world, in the sense of in place, because it is in the air, and the air is in the world; and when we say it is in the air, we do not mean it is in every part of the air, but that it is in the air because of the outer surface of the air which surrounds it; for if all the air were its place, the place of a thing would not be equal to the thing-which it is supposed to be, and which the primary place in which a thing is actually is.

  When what surrounds, then, is not separate from the thing, but is in continuity with it, the thing is said to be in what surrounds it, not in the sense of in place, but as a part in a whole. But when the thing is separate and in contact, it is immediately 'in' the inner surface of the surrounding body, and this surface is neither a part of what is in it nor yet greater than its extension, but equal to it; for the extremities of things which touch are coincident.

  Further, if one body is in continuity with another, it is not moved in that but with that. On the other hand it is moved in that if it is separate. It makes no difference whether what contains is moved or not.

  Again, when it is not separate it is described as a part in a whole, as the pupil in the eye or the hand in the body: when it is separate, as the water in the cask or the wine in the jar. For the hand is moved with the body and the water in the cask.

  It will now be plain from these considerations what place is. There are just four things of which place must be one-the shape, or the matter, or some sort of extension between the bounding surfaces of the containing body, or this boundary itself if it contains no extension over and above the bulk of the body which comes to be in it.

  Three of these it obviously cannot be:

  (1) The shape is supposed to be place because it surrounds, for the extremities of what contains and of what is contained are coincident. Both the shape and the place, it is true, are boundaries. But not of the same thing: the form is the boundary of the thing, the place is the boundary of the body which contains it.

  (2) The extension between the extremities is thought to be something, because what is contained and separate may often be changed while the container remains the same (as water may be poured from a vessel)-the assumption being that the extension is something over and above the body displaced. But there is no such extension. One of the bodies which change places and are naturally capable of being in contact with the container falls in whichever it may chance to be.

  If there were an extension which were such as to exist independently and be permanent, there would be an infinity of places in the same thing. For when the water and the air change places, all the portions of the two together will play the same part in the whole which was previously played by all the water in the vessel; at the same time the place too will be undergoing change; so that there will be another place which is the place of the place, and many places will be coincident. There is not a different place of the part, in which it is moved, when the whole vessel changes its place: it is always the same: for it is in the (proximate) place where they are that the air and the water (or the parts of the water) succeed each other, not in that place in which they come to be, which is part of the place which is the place of the whole world.

  (3) The matter, too, might seem to be place, at least if we consider it in what is at rest and is thus separate but in continuity. For just as in change of quality there is something which was formerly black and is now white, or formerly soft and now hard-this is just why we say that the matter exists-so place, because it presents a similar phenomenon, is thought to exist-only in the one case we say so because what was air is now water, in the other because where air formerly was there a is now water. But the matter, as we said before, is neither separable from the thing nor contains it, whereas place has both characteristics.

  Well, then, if place is none of the three-neither the form nor the matter nor an extension which is always there, different from, and over and above, the extension of the thing which is displaced-place necessarily is the one of the four which is left, namely, the boundary of the containing body at which it is in contact with the contained body. (By the contained body is meant what can be moved by way of locomotion.)

  Place is thought to be something important and hard to grasp, both because the matter and the shape present themselves along with it, and because the displacement of the body that is moved takes place in a stationary container, for it seems possible that there should be an interval which is other than the bodies which are moved. The air, too, which is thought to be incorporeal, contributes something to the belief: it is not only the boundaries of the vessel which seem to be place, but also what is between them, regarded as empty. Just, in fact, as the vessel is transportable place, so place is a non-portable vessel. So when what is within a thing which is moved, is moved and changes its place, as a boat on a river, what contains plays the part of a vessel rather than that of place. Place on the other hand is rather what is motionless: so it is rather the whole river that is place, because as a whole it is motionless.

  Hence we conclude that the innermost motionless boundary of what contains is place.

  This explains why the middle of the heaven and the surface which faces us of the rotating system are held to be 'up' and 'down' in the strict and fullest sense for all men: for the one is always at rest, while the inner side of the rotating body remains always coincident with itself. Hence since the light is what is naturally carried up, and the heavy what is carried down, the boundary which contains in the direction of the middle of the universe, and the middle itself, are down, and that which contains in the direction of the outermost part of the universe, and the outermost part itself, are up.

  For this reason, too, place is thought to be a kind of surface, and as it were a vessel, i.e. a container of the thing.

  Further, place is coincident with the thing, for boundaries are coincident with the bounded.

5

… It is clear, too, from these considerations that all the problems which were raised about place will be solved when it is explained in this way:

(1) There is no necessity that the place should grow with the body in it,
(2) Nor that a point should have a place,
(3) Nor that two bodies should be in the same place,
(4) Nor that place should be a corporeal interval: for what is between the boundaries of the place is any body which may chance to be there, not an interval in body.
 

Further, (5) place is also somewhere, not in the sense of being in a place, but as the limit is in the limited; for not everything that is is in place, but only movable body.

  Also (6) it is reasonable that each kind of body should be carried to its own place. For a body which is next in the series and in contact (not by compulsion) is akin, and bodies which are united do not affect each other, while those which are in contact interact on each other.

  Nor (7) is it without reason that each should remain naturally in its proper place. For this part has the same relation to its place, as a separable part to its whole, as when one moves a part of water or air: so, too, air is related to water, for the one is like matter, the other form-water is the matter of air, air as it were the actuality of water, for water is potentially air, while air is potentially water, though in another way…

10

… But as time is most usually supposed to be… motion and a kind of change, we must consider this view.

Now (a) the change or movement of each thing is only in the thing which changes or where the thing itself which moves or changes may chance to be. But time is present equally everywhere and with all things.

  Again, (b) change is always faster or slower, whereas time is not: for 'fast' and 'slow' are defined by time-'fast' is what moves much in a short time, 'slow' what moves little in a long time; but time is not defined by time, by being either a certain amount or a certain kind of it.

  Clearly then it is not movement. (We need not distinguish at present between 'movement' and 'change'.)

11

But neither does time exist without change; for when the state of our own minds does not change at all, or we have not noticed its changing, we do not realize that time has elapsed, any more than those who are fabled to sleep among the heroes in Sardinia do when they are awakened; for they connect the earlier 'now' with the later and make them one, cutting out the interval because of their failure to notice it. So, just as, if the 'now' were not different but one and the same, there would not have been time, so too when its difference escapes our notice the interval does not seem to be time. If, then, the non-realization of the existence of time happens to us when we do not distinguish any change, but the soul seems to stay in one indivisible state, and when we perceive and distinguish we say time has elapsed, evidently time is not independent of movement and change. It is evident, then, that time is neither movement nor independent of movement.

  We must take this as our starting-point and try to discover-since we wish to know what time is-what exactly it has to do with movement.

  Now we perceive movement and time together: for even when it is dark and we are not being affected through the body, if any movement takes place in the mind we at once suppose that some time also has elapsed; and not only that but also, when some time is thought to have passed, some movement also along with it seems to have taken place. Hence time is either movement or something that belongs to movement. Since then it is not movement, it must be the other.

  But what is moved is moved from something to something, and all magnitude is continuous. Therefore the movement goes with the magnitude. Because the magnitude is continuous, the movement too must be continuous, and if the movement, then the time; for the time that has passed is always thought to be in proportion to the movement.

  The distinction of 'before' and 'after' holds primarily, then, in place; and there in virtue of relative position. Since then 'before' and 'after' hold in magnitude, they must hold also in movement, these corresponding to those. But also in time the distinction of 'before' and 'after' must hold, for time and movement always correspond with each other. The 'before' and 'after' in motion is identical in substratum with motion yet differs from it in definition, and is not identical with motion.

  But we apprehend time only when we have marked motion, marking it by 'before' and 'after'; and it is only when we have perceived 'before' and 'after' in motion that we say that time has elapsed. Now we mark them by judging that A and B are different, and that some third thing is intermediate to them. When we think of the extremes as different from the middle and the mind pronounces that the 'nows' are two, one before and one after, it is then that we say that there is time, and this that we say is time. For what is bounded by the 'now' is thought to be time-we may assume this.

  When, therefore, we perceive the 'now' one, and neither as before and after in a motion nor as an identity but in relation to a 'before' and an 'after', no time is thought to have elapsed, because there has been no motion either. On the other hand, when we do perceive a 'before' and an 'after', then we say that there is time. For time is just this-number of motion in respect of 'before' and 'after'.

  Hence time is not movement, but only movement in so far as it admits of enumeration. A proof of this: we discriminate the more or the less by number, but more or less movement by time. Time then is a kind of number. (Number, we must note, is used in two senses-both of what is counted or the countable and also of that with which we count. Time obviously is what is counted, not that with which we count: there are different kinds of thing.) Just as motion is a perpetual succession, so also is time. But every simultaneous time is self-identical; for the 'now' as a subject is an identity, but it accepts different attributes. The 'now' measures time, in so far as time involves the 'before and after'.

  The 'now' in one sense is the same, in another it is not the same. In so far as it is in succession, it is different (which is just what its being was supposed to mean), but its substratum is an identity: for motion, as was said, goes with magnitude, and time, as we maintain, with motion. Similarly, then, there corresponds to the point the body which is carried along, and by which we are aware of the motion and of the 'before and after' involved in it. This is an identical substratum (whether a point or a stone or something else of the kind), but it has different attributes as the sophists assume that Coriscus' being in the Lyceum is a different thing from Coriscus' being in the market-place. And the body which is carried along is different, in so far as it is at one time here and at another there. But the 'now' corresponds to the body that is carried along, as time corresponds to the motion. For it is by means of the body that is carried along that we become aware of the 'before and after' the motion, and if we regard these as countable we get the 'now'. Hence in these also the 'now' as substratum remains the same (for it is what is before and after in movement), but what is predicated of it is different; for it is in so far as the 'before and after' is numerable that we get the 'now'. This is what is most knowable: for, similarly, motion is known because of that which is moved, locomotion because of that which is carried. what is carried is a real thing, the movement is not. Thus what is called 'now' in one sense is always the same; in another it is not the same: for this is true also of what is carried.

  Clearly, too, if there were no time, there would be no 'now', and vice versa. just as the moving body and its locomotion involve each other mutually, so too do the number of the moving body and the number of its locomotion. For the number of the locomotion is time, while the 'now' corresponds to the moving body, and is like the unit of number.

Time, then, also is both made continuous by the 'now' and divided at it. For here too there is a correspondence with the locomotion and the moving body. For the motion or locomotion is made one by the thing which is moved, because it is one-not because it is one in its own nature (for there might be pauses in the movement of such a thing)-but because it is one in definition: for this determines the movement as 'before' and 'after'. Here, too there is a correspondence with the point; for the point also both connects and terminates the length-it is the beginning of one and the end of another. But when you take it in this way, using the one point as two, a pause is necessary, if the same point is to be the beginning and the end. The 'now' on the other hand, since the body carried is moving, is always different.

  Hence time is not number in the sense in which there is 'number' of the same point because it is beginning and end, but rather as the extremities of a line form a number, and not as the parts of the line do so, both for the reason given (for we can use the middle point as two, so that on that analogy time might stand still), and further because obviously the 'now' is no part of time nor the section any part of the movement, any more than the points are parts of the line-for it is two lines that are parts of one line.

  In so far then as the 'now' is a boundary, it is not time, but an attribute of it; in so far as it numbers, it is number; for boundaries belong only to that which they bound, but number (e.g. ten) is the number of these horses, and belongs also elsewhere.

  It is clear, then, that time is 'number of movement in respect of the before and after', and is continuous since it is an attribute of what is continuous.

12

…  It is clear, too, that time is not described as fast or slow, but as many or few and as long or short. For as continuous it is long or short and as a number many or few, but it is not fast or slow-any more than any number with which we number is fast or slow.

  … Time is not number with which we count, but the number of things which are counted, and this according as it occurs before or after is always different, for the 'nows' are different. And the number of a hundred horses and a hundred men is the same, but the things numbered are different-the horses from the men. Further, as a movement can be one and the same again and again, so too can time, e.g. a year or a spring or an autumn.

  Not only do we measure the movement by the time, but also the time by the movement, because they define each other. The time marks the movement, since it is its number, and the movement the time. We describe the time as much or little, measuring it by the movement, just as we know the number by what is numbered, e.g. the number of the horses by one horse as the unit. For we know how many horses there are by the use of the number; and again by using the one horse as unit we know the number of the horses itself. So it is with the time and the movement; for we measure the movement by the time and vice versa. It is natural that this should happen; for the movement goes with the distance and the time with the movement, because they are quanta and continuous and divisible. The movement has these attributes because the distance is of this nature, and the time has them because of the movement. And we measure both the distance by the movement and the movement by the distance; for we say that the road is long, if the journey is long, and that this is long, if the road is long-the time, too, if the movement, and the movement, if the time…

  Plainly, too, to be in time does not mean to co-exist with time, any more than to be in motion or in place means to co-exist with motion or place. For if 'to be in something' is to mean this, then all things will be in anything, and the heaven will be in a grain; for when the grain is, then also is the heaven. But this is a merely incidental conjunction, whereas the other is necessarily involved: that which is in time necessarily involves that there is time when it is, and that which is in motion that there is motion when it is.…

  Since time is the measure of motion, it will be the measure of rest too-indirectly. For all rest is in time. For it does not follow that what is in time is moved, though what is in motion is necessarily moved. For time is not motion, but 'number of motion': and what is at rest, also, can be in the number of motion. Not everything that is not in motion can be said to be 'at rest'-but only that which can be moved, though it actually is not moved, as was said above.…

Book VII

1

EVERYTHING that is in motion must be moved by something. For if it has not the source of its motion in itself it is evident that it is moved by something other than itself, for there must be something else that moves it.…

  Since everything that is in motion must be moved by something, let us take the case in which a thing is in locomotion and is moved by something that is itself in motion, and that again is moved by something else that is in motion, and that by something else, and so on continually: then the series cannot go on to infinity, but there must be some first movent.…

Book VIII

1

IT remains to consider the following question. Was there ever a becoming of motion before which it had no being, and is it perishing again so as to leave nothing in motion? Or are we to say that it never had any becoming and is not perishing, but always was and always will be? Is it in fact an immortal never-failing property of things that are, a sort of life as it were to all naturally constituted things?…

 Now if there was a becoming of every movable thing, it follows that before the motion in question another change or motion must have taken place in which that which was capable of being moved or of causing motion had its becoming. To suppose, on the other hand, that these things were in being throughout all previous time without there being any motion appears unreasonable on a moment's thought, and still more unreasonable, we shall find, on further consideration.… All things that are capable respectively of affecting and being affected, or of causing motion and being moved, are capable of it not under all conditions, but only when they are in a particular condition and approach one another: so it is on the approach of one thing to another that the one causes motion and the other is moved, and when they are present under such conditions as rendered the one motive and the other movable. So if the motion was not always in process, it is clear that they must have been in a condition not such as to render them capable respectively of being moved and of causing motion, and one or other of them must have been in process of change: for in what is relative this is a necessary consequence: e.g. if one thing is double another when before it was not so, one or other of them, if not both, must have been in process of change. It follows then, that there will be a process of change previous to the first.

  (Further, how can there be any 'before' and 'after' without the existence of time? Or how can there be any time without the existence of motion? If, then, time is the number of motion or itself a kind of motion, it follows that, if there is always time, motion must also be eternal. But so far as time is concerned we see that all with one exception are in agreement in saying that it is uncreated: in fact, it is just this that enables Democritus to show that all things cannot have had a becoming: for time, he says, is uncreated. Plato alone asserts the creation of time, saying that it had a becoming together with the universe, the universe according to him having had a becoming. Now since time cannot exist and is unthinkable apart from the moment, and the moment a kind of middle-point, uniting as it does in itself both a beginning and an end, a beginning of future time and an end of past time, it follows that there must always be time: for the extremity of the last period of time that we take must be found in some moment, since time contains no point of contact for us except the moment. Therefore, since the moment is both a beginning and an end, there must always be time on both sides of it. But if this is true of time, it is evident that it must also be true of motion, time being a kind of affection of motion.)

  The same reasoning will also serve to show the imperishability of motion: just as a becoming of motion would involve, as we saw, the existence of a process of change previous to the first, in the same way a perishing of motion would involve the existence of a process of change subsequent to the last: for when a thing ceases to be moved, it does not therefore at the same time cease to be movable-e.g. the cessation of the process of being burned does not involve the cessation of the capacity of being burned, since a thing may be capable of being burned without being in process of being burned-nor, when a thing ceases to be movent, does it therefore at the same time cease to a be motive. Again, the destructive agent will have to be destroyed, after what it destroys has been destroyed, and then that which has the capacity of destroying it will have to be destroyed afterwards, (so that there will be a process of change subsequent to the last,) for being destroyed also is a kind of change. If, then, view which we are criticizing involves these impossible consequences, it is clear that motion is eternal and cannot have existed at one time and not at another: in fact such a view can hardly be described as anythling else than fantastic.… Let this conclude what we have to say in support of our contention that there never was a time when there was not motion, and never will be a time when there will not be motion.

8

Let us now proceed to maintain that it is possible that there should be an infinite motion that is single and continuous, and that this motion is rotatory motion. The motion of everything that is in process of locomotion is either rotatory or rectilinear or a compound of the two: consequently, if one of the former two is not continuous, that which is composed of them both cannot be continuous either. Now it is plain that if the locomotion of a thing is rectilinear and finite it is not continuous locomotion: for the thing must turn back, and that which turns back in a straight line undergoes two contrary locomotions, since, so far as motion in respect of place is concerned, upward motion is the contrary of downward motion, forward motion of backward motion, and motion to the left of motion to the right, these being the pairs of contraries in the sphere of place. But we have already defined single and continuous motion to be motion of a single thing in a single period of time and operating within a sphere admitting of no further specific differentiation… But what shows most clearly that rectilinear motion cannot be continuous is the fact that turning back necessarily implies coming to a stand, not only when it is a straight line that is traversed, but also in the case of locomotion in a circle (which is not the same thing as rotatory locomotion: for, when a thing merely traverses a circle, it may either proceed on its course without a break or turn back again when it has reached the same point from which it started).…

On the other hand, in motion on a circular line we shall find singleness and continuity: for here we are met by no impossible consequence: that which is in motion from A will in virtue of the same direction of energy be simultaneously in motion to A (since it is in motion to the point at which it will finally arrive), and yet will not be undergoing two contrary or opposite motions: for a motion to a point and a motion from that point are not always contraries or opposites: they are contraries only if they are on the same straight line (for then they are contrary to one another in respect of place, as e.g. the two motions along the diameter of the circle, since the ends of this are at the greatest possible distance from one another), and they are opposites only if they are along the same line. Therefore in the case we are now considering there is nothing to prevent the motion being continuous and free from all intermission: for rotatory motion is motion of a thing from its place to its place, whereas rectilinear motion is motion from its place to another place.

  Moreover the progress of rotatory motion is never localized within certain fixed limits, whereas that of rectilinear motion repeatedly is so.… We need now say no more in support of the position that there is no process of change that admits of infinity or continuity except rotatory locomotion.

9

It can now be shown plainly that rotation is the primary locomotion.… Again, a motion that admits of being eternal is prior to one that does not. Now rotatory motion can be eternal: but no other motion, whether locomotion or motion of any other kind, can be so, since in all of them rest must occur and with the occurrence of rest the motion has perished. Moreover the result at which we have arrived, that rotatory motion is single and continuous, and rectilinear motion is not, is a reasonable one. In rectilinear motion we have a definite starting-point, finishing-point, middle-point, which all have their place in it in such a way that there is a point from which that which is in motion can be said to start and a point at which it can be said to finish its course (for when anything is at the limits of its course, whether at the starting-point or at the finishing-point, it must be in a state of rest). On the other hand in circular motion there are no such definite points: for why should any one point on the line be a limit rather than any other? Any one point as much as any other is alike starting-point, middle-point, and finishing-point, so that we can say of certain things both that they are always and that they never are at a starting-point and at a finishing-point (so that a revolving sphere, while it is in motion, is also in a sense at rest, for it continues to occupy the same place). The reason of this is that in this case all these characteristics belong to the centre: that is to say, the centre is alike starting-point, middle-point, and finishing-point of the space traversed; consequently since this point is not a point on the circular line, there is no point at which that which is in process of locomotion can be in a state of rest as having traversed its course, because in its locomotion it is proceeding always about a central point and not to an extreme point: therefore it remains still, and the whole is in a sense always at rest as well as continuously in motion.…

  Our present position, then, is this: We have argued that there always was motion and always will be motion throughout all time, and we have explained what is the first principle of this eternal motion: we have explained further which is the primary motion and which is the only motion that can be eternal: and we have pronounced the first movent to be unmoved.

10

We have now to assert that the first movent must be without parts and without magnitude, beginning with the establishment of the premisses on which this conclusion depends.

  One of these premisses is that nothing finite can cause motion during an infinite time.…

  It has now to be shown that in no case is it possible for an infinite force to reside in a finite magnitude.…

  … we proceed from the positions that there must be continuous motion in the world of things, that this is a single motion, that a single motion must be a motion of a magnitude (for that which is without magnitude cannot be in motion), and that the magnitude must be a single magnitude moved by a single movent (for otherwise there will not be continuous motion but a consecutive series of separate motions), and that if the movement is a single thing, it is either itself in motion or itself unmoved: if, then, it is in motion, it will have to be subject to the same conditions as that which it moves, that is to say it will itself be in process of change and in being so will also have to be moved by something: so we have a series that must come to an end, and a point will be reached at which motion is imparted by something that is unmoved. Thus we have a movent that has no need to change along with that which it moves but will be able to cause motion always (for the causing of motion under these conditions involves no effort): and this motion alone is regular, or at least it is so in a higher degree than any other, since the movent is never subject to any change.…  The only continuous motion, then, is that which is caused by the unmoved movent: and this motion is continuous because the movent remains always invariable, so that its relation to that which it moves remains also invariable and continuous.

  Now that these points are settled, it is clear that the first unmoved movent cannot have any magnitude. For if it has magnitude, this must be either a finite or an infinite magnitude. Now we have already'proved in our course on Physics that there cannot be an infinite magnitude: and we have now proved that it is impossible for a finite magnitude to have an infinite force, and also that it is impossible for a thing to be moved by a finite magnitude during an infinite time. But the first movent causes a motion that is eternal and does cause it during an infinite time. It is clear, therefore, that the first movent is indivisible and is without parts and without magnitude.