
Quantification 
 

In this and subsequent chapters, we will develop a more formal system of dealing 
with categorical statements, one that will be much more flexible than traditional logic, 
allow a deeper analysis of predication, and utilize the reduction tree method for testing 
statements and arguments. 

Constants and Predicates 
 

The basic unit of truth functional logic was the statement.  Out of statements, 
statement variables and truth functional connectives, we developed a statement calculus.  
The units with which we will now be dealing include predicates and the individuals to 
whom those predicates are applied.  Upper case letters will be used as predicate 
constants.  Lower case letters, "a" through "v" will be used as individual constants.  
Lower case letters, "x" through "z", will be used as individual variables. 

A limitation of traditional categorical logic was the lack of an easy and effective 
way of dealing with individuals.  The statement, "Socrates is mortal," was translated into 
standard form as "All persons identical to Socrates are mortals."  Using "s" as an 
individual constant abbreviating the proper name, "Socrates," and "Mx" abbreviating the 
predicate "x is mortal," we can express the statement "Socrates is mortal" as: 

Ms 
substituting the individual constant "s" for the "x".  "Socrates is a wise mortal" can be 
symbolized as the truth functionally compound statement, 

Ws & Ms 
which we read as "Socrates is wise and Socrates is mortal." 
 

Exercise 14.1 
 
Using the suggested notation, symbolize the statements expressed by the following 
sentences. 
 
1. Laches was an Athenian general. (l: Laches;  Ax: x was an Athenian; Gx: x was a 

general) 
2. Laches was wise and brave. (l: Laches; Wx: x was wise; Bx: x was brave) 
3. Both Laches and Demosthenes were brave generals. (l: Laches; d: Demosthenes; 

Bx: x was brave; Gx: x was a general). 
4. Socrates was wise and brave, but not a general. (s: Socrates; Wx: x was wise; Bx: x 

was brave; Gx: x as a general) 
5. If Laches was a general, then he was a brave Athenian. (l: Laches; Gx: x was a 

general; Bx: x was brave; Ax: x was an Athenian) 
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Quantifiers 
 

In traditional logic, statements such as "All humans are mortals" were interpreted as 
relations of inclusion or exclusion between classes.  In the predicate calculus, they are 
treated as general statements about individuals.  The symbol "∀" is used for universal 
quantification and the symbol "∃" is used for existential quantification. 
 
Bound and Free Variables 
 

A variable is said to be bound if it falls within the scope of a quantifier.  It is free if 
it does not fall within the scope of a quantifier.  Only if all variables within an expression 
are bound is that expression complete or well-formed.  The expression, 

Hx 
is not a well-formed formula.  The free occurrence of the variable "x" leaves the 
expression uninterpretable in terms of truth or falsity. 
 
Generalization 
 

A general statement may be either existential or universal.  From the statement, 
"Socrates is human," symbolized 

Hs 
we may validly infer "Something is human."  This would be symbolized 

∃x Hx 
and literally read as "There exists an x such that x is human." 

The scope of a quantifier is interpreted as applying to the smallest possible unit, just 
as was negation or the tilde (~).  If we existentially generalize from "Socrates is human 
and mortal" 

Hs & Ms 
to "There exists an x such that x is both human and mortal," we must symbolize the latter 
as 

∃x(Hx & Mx) 
for the expression 

∃x Hx & Mx 
leaves the second occurrence of the variable "x" unbound.  It is useful to compare "There 
exists an x such that x is both human and mortal" with "There exists an x which is human 
and there exists an x which is mortal."  The latter is symbolized 

∃x Hx & ∃x Mx. 
The above does not assert that the thing which is human is the same thing which is 
mortal. 

The universally general statement "Everything is mortal" is symbolized 
∀x Mx. 

The categorical statement "All humans are mortal" would have to be symbolized 
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∀x(Hx ⊃ Mx). 
The above is literally read, "For all x, if x is human, then x is mortal."  The expression 

∀x(Hx & Mx) 
is read, "For all x, x is both human and mortal."  That is, it asserts that everything, not 
just humans, are mortal, which is obviously an incorrect interpretation of "All humans are 
mortal." 
 
Instantiation 
 

The interpretation of general statements and how they are instantiated or applied to 
individuals can be clarified if we assume a universe of discourse of only three 
individuals.  Let us name these three individuals a, b, and c.  If we which to attribute 
some predicate D to all individuals, we can assert 

∀x Dx 
which, for our universe of discourse is materially equivalent1 to 

Da & Db & Dc. 
If we wish to assert that every individual which has the predicate D also has the predicate 
E, then we would write 

∀x(Dx ⊃ Ex). 
Applied to our limited universe of discourse, this statement expands to 

(Da ⊃ Ea) & (Db ⊃ Eb) & (Dc ⊃ Ec). 
In this limited universe of discourse, the existentially general statement 

∃x Dx 
is expanded as 

Da ∨ Db ∨ Dc. 
That is, D is said to be predicatable of at least one individual.  That could be a or b or c. 

What we see above is that general statements, be they universal or existential, are 
interpreted as applying to the entire universe of discourse.  Universally general 
statements are applied conjunctively while existentially general statements are applied 
disjunctively. 

Exercise 14.2 
 
Using the suggested notation, symbolize the statements expressed by the following 
sentences. 
 
1. Everything is extended. (Ex: x is extended) 
2. Everything is mental. (Mx: x is mental) 
3. Everything is either extended or mental. (Ex: x is extended; Mx: x is mental) 
4.  No extended things are mental. (Ex: x is extended; Mx: x is mental) 
                                                 

1The equivalence is material rather than logical.  Logical equivalence would hold 
for any universe of discourse, not our limited universe of three individuals alone. 
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5. Things are extended if and only if they are not mental. (Ex: x is extended; Mx: x is 
mental) 

6. Something is extended. (Ex: x is extended) 
7. Nothing is mental. (Mx: x is mental) 
8. All philosophers are logicians. (Px: x is a philosopher; Lx: x is a logician) 
9. Some philosophers are logicians. (Px: x is a philosopher; Lx: x is a logician) 
10. Some philosophers are not logicians. (Px: x is a philosopher; Lx: x is a logician) 
11. No philosopher is both a mathematician and a logician.. (Px: x is a philosopher; 

Mx: x is a mathematician; Lx: x is a logician) 
12. Some philosophers are mathematicians and some philosophers are logicians. (Px: x 

is a philosopher; Mx: x is a mathematician; Lx: x is a logician) 
13. All philosophers are either logicians or mathematicians. (Px: x is a philosopher; 

Mx: x is a mathematician; Lx: x is a logician) 
14. Only logicians are both mathematicians and philosophers. (Px: x is a philosopher; 

Mx: x is a mathematician; Lx: x is a logician) 
15. Neither mathematicians nor logicians are philosophers. (Px: x is a philosopher; Mx: 

x is a mathematician; Lx: x is a logician) 
 

Identity 
 

A concept we use frequently in this and following chapters is that of identity, 
symbolized by "=".  We will treat identity as an operator whose terms are individual 
constants or variables.  Thus "a = a" and "∀x∀y(x = y)" are examples of well formed 
identity statements. 
 
Self-Identity or Reflexivity 
 

The law of identity, perhaps the most basic tautology, is that everything is identical 
to itself: 

∀x(x = x). 
Any relation that a thing has to itself is reflexive. 
 
Non-Identity 
 

Non-identity may be symbolized in either of two ways: ~a=b or a≠b.  Since a 
statement of self-identity, a=a, is a tautology, any statement of non-self-identity, a≠a, is a 
contradiction. 
 
Symmetry 
 

Identify is symetrical.  Thus if a=b, then b=a.  In formal notation, 
∀x∀y(x=y  ⇔ y=x). 
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Transitivity 
 

Identity is also transitive.  Thus if a=b and b=c, then a=c.  In formal notation, 
∀x∀y∀x[(x=y & y=z) ⇒ x=z] 

 
Rules of Identity and Denied Identity 
 

The rule of identity for reduction trees allows, given that one line of the tree is an 
identity statement, the substitution of one individual constant for the other in any other 
line.  The application of the rule is illustrated in the following tree. 

Aa 
Bb 
a=b 
Aa & Ba

1.  Aa                 premise 
2.  Bb                 premise 
3.  a=b                premise 
4.  ~(Aa & Ba)   ~ conclusion

5. ~Aa      ~Ba   from 4, denied conjunction
x    6.  Ba   from 2,3, identity

x

√

 
 
Note that line three, the identity statement, is not checked. 

A statement of non-identity or denied identity may be symbolized in either of two 
ways.  It may be expressed as ~a=b or as a≠b.  Since any statement of self-identity, such 
as a=a, is a tautology, any denial of self-identity, such as a≠a, is a contradiction.  Thus, 
whenever a line in a reduction tree is of the form, a≠a, the path may be closed.  The 
following tree illustrates denied identity. 

 
 

a = b 1. a = b premise 
c = d 2. c = d premise 
b ≠d 3. b ≠d premise 
a ≠c √4.~a ≠ c denied conclusion 
 5. a = c from 4, double denial 
 6. b ≠ c from 3, 2; identity 
 7. b ≠ a from 5,6; identity 
 8. a ≠ a from 7, 1; identity 
         x 

 
 
 
 
 
 
 
 
Note that line 4 is truth functionally compound.  The expression, ~a≠c , is logically 
equivalent to ~~a=c.  Line 8, a≠a, is the contradiction which allows us to close the path. 

Reduction Tree Rules for Quantifiers 
 

We now need to add rules for general statements and the denial of general 
statements.  Once we have done that, we will have completed the formal development of 
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the predicate calculus. 
 

Universal Instantiation (UI) 
 

If a path contains a line that is universally general, then that line should be 
instantiated to every individual constant that occurs in the path.  Do not check the line. 
Universally general statements are expanded conjunctively.  They are true of every 
individual in the universe of discourse.  Universal instantiation is illustrated in the 
following tree. 

 x(Ax    Bx) 
Aa 
Ab
Ba & Bb

∀ ⊃ ∀ x(Ax    Bx)  
Aa 
Ab

1.
2.
3.
4.  ~(Ba & Bb)

premise
premise
premise

~conclusion

7.  ~Ba       ~Bb from 4, denied conjunction

⊃

√
5.  Aa    Ba 
6.  Ab    Bb from 1,UI⊃

⊃

8.  ~Aa   Ba  from 5, UI ~Ab   Bb  from 6, UI
x x x x

√
√

 
Since the individual constants, a and b, occur in lines 2 and 3, line 1 must be instantiated 
to both. Thus lines 5 and 6.  Line 1 remains unchecked because, if additional constants 
are introduced, it will have to be instantiated to them as well. 
 
Quantifier Negation (QN) 
 

The rule for a negated quantifier is to change the quantity of the quantifier and to 
move the tilde from the left to the right of the quantifier.  The equivalences for negated 
quantifiers are (using the Greek letter, Φ, as a predicate variable): 

~∀x Φx  ⇔  ∃x ~Φx 
~∃x Φx  ⇔  ∀x ~Φx 

Check a line after applying the rule of quantifier negation.  The rule for quantifier 
negation is used in the following example. 

∀x(Ax     Bx)⊃ ∀x(Ax     Bx)⊃
Ad Ad

x Bx∃ x Bx∃~

1.
2.
3.
4.     x ~Bx∀ from 3, QN

premise
premise

~conclusion

5.  Ad     Bd⊃

 

from 1, UI
6.  ~Bd                 from 4, UI   

7.  ~Ad     Bd       from 5, implication
x x

√

√

 

 99 



 
Existential Instantiation (EI) 
 

An existentially general statement must be instantiated to an individual constant 
which has no previous occurance in the path.  Existentially general statements are 
expanded disjunctively.  They are true of at least one individual in the universe of 
discourse, but we do not know which one.  After applying existential instantiation, check 
the line of the existentially general statement.  Existential instantiation is illustrated in the 
tree below. 

x(Ax     Dx)∀ ⊃x(Ax     Dx)∀ ⊃
∃x Ax x Ax∃

∃ x (Ax & Dx)∃ x (Ax & Dx) ~

1.
2.
3.

premise
~conclusion

premise

4.  Aa                          from 2, EI
5.     x~(Ax & Dx)       from 3, QN
6.   ~(Aa & Da)           from 5, UI

∀

7.  Aa     Da                 from 1, UI⊃

8.  ~Aa      ~Da     from 6, denied conjunction
x

9.   ~Aa      Da     from 7, implication
x x

√

√
√

√

 
Note that EI is used before UI.  Since existential instantiation must be to a constant which 
has no  previous occurance in the path and universal instantiation must be to every 
constant which has an occurance in the path, to use UI first would be wasted effort. 
 

Exercise 14.3 
 
Construct reduction trees for the following valid arguments. 
 
1. ∀x(Sx ⊃ Tx) 2. ∀x[(Sx & Rx) ⊃ Tx] 
 ∃x(Sx & Rx)  ∀x(Sx ⊃ Rx) 
 ∃x(Rx & Tx)  ∃x Sx_______ 
   ∃x Tx 
 
3. Sa 4. ∃x(Sx ∨ Rx) 
 Ra  ∀x(Sx ⊃ Tx) 
 ∃x(Sx & Rx) ⊃ ∃x Tx    ∀x(Rx ⊃ Px) 
 ∃x Tx  ∃x(Tx ∨ Px) 
 
5. Sa 6. ∀x[(Sx & Tx) ⊃ x=a] 
 ∀x(Sx ⊃ ~Tx)  ∃x[(Sx & Tx) & Rx]__ 
 ∀x(Tx ≡ Rx)___  Ra 
 Sa & ~Ra 
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7. ∃x Ex ⊃ ∀x(Ex & Wx) 8. Sa & (Wa ∨ Ta)______ 
 Ea_________________  ∃x[(Sx & Wx) ∨ (Sx & Tx)] 
 Wa 
 
9. ∃x(Sx & Tx) 10. Sa 
 ∃x(Rx & Px)  Wb________________ 
 ∃x(Sx ∨ Rx)  ∃x[a=b ⊃ (Sx & Wx)] 
 
General Statements and Invalid Arguments 
 

Invalid arguments can lead to more complicated trees than valid arguments.  
Consider the simple argument: 
 ∃x Ax 
 ∃x Bx 
 ∃x (Ax & Bx) 
 
If we expand the argument for a universe of only one entity, "a," the argument is valid.  
But if the argument is expanded to a universe of two, it is invalid. 
 
 Aa Aa ∨ Ab 
 Ba______ Ba ∨ Bb 
 Aa & Ba (Aa & Ba) ∨ (Ab & Bb) 
 
Here is the reduction tree for the argument. 

1.  ∃ x Ax
2.    x Bx

∃
∃

premise
premise

3.       x (Ax & Bx)~ ~ conclusion
4.  

√
∀x  ~(Ax & Bx)   3, QN

5.  Aa               1, EI 
6.  Bb               2, EI 
7.  ~(Aa & Ba)   4, UI 
8.  ~(Ab & Bb)   4, UI

9.   ~Aa       ~Ba       7, denied conjunction
x

√
√

10.  ~Ab       ~Bb      8, denied conjunction
x

√

√

 
Note that, had line 2 been instantiated to "a" (contrary to the rule for existential 
instantiation), both paths could have been closed at line 9.  Thus the argument would 
have been valid for a universe of one, though not valid for a universe of two.  If an 

 101 



argument is invalid for a universe of n entities, it is invalid for any universe of entities 
greater than n.  The counter-example for the above argument is: 
 
 Aa  Ab  Ba  Bb 
  T    F    F    T 

 

Exercise 14.4 
 
Construct reduction trees for the following invalid arguments, and provide counter-
examples from the trees. 
 
1. ∀x (Ax ⊃ Bx) 2. ∃x (Ax & Bx) 
 ∃x Bx_______  ∃x (Ax & ~Bx) 
 ∃x Ax  ∃x (Bx & ~Bx) 
 
3. ∀x (Ax ⊃ ~Bx) 4. ∀x [(Ax & Bx) ⊃ Cx] 
 Aa  ∃x Ax 
 Bb___________  Ba________________ 
 ∃x (Ax & Bx)  ∃x Cx 
 
5. ∀x [~Ax ∨ (Bx & Cx)] 6. Aa 
 ∃x Bx  Ba_________ 
 ∃x (Cx & Dx)_______  ∀x (Ax & Bx) 
 ∀x ~Ax 
 
7. Aa & ∃x (Bx & x=a) 8. ∀x [Ax ⊃ (Bx ∨ Cx)] 
 Ab_______________  ∃x Ax 
 Bb  ∃x Cx_____________ 
   ~∃x Bx 
 
9. ∀x [(Ax ∨ Bx) ⊃ Cx] 10. ∀x (Ax ⊃ Bx) 
 ∃x Ax_____________   ∃x (Ax ≡ Bx) 
 ∃x (Ax & Bx)   ∃x (Ax & Bx) 
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Exercise 14.5 
 
Construct reduction trees for the following arguments, determining their validity or 
invalidity.  If the argument is invalid, provide a counter-example. 
 
1. ∃x[Ax & (Bx ∨ Cx)] 2. ∀x (Ax ≡ Bx) 
 ∀x (Bx ⊃ x=a)_____  ∃x (Bx ≡ Cx) 
 Ba ∨ ∃x (Ax & Cx)  ~∃x Cx_____ 
   ~∃x Ax 
 
3. Aa & Ba 4. ∀x (Ax ⊃ x=a) 
 ∃x (Ax & Cx)  Ba & a=b 
 ∃x (Ax & Bx)  Ac__________ 
   Bc 
 
5. a ≠ b 6. ∀x (Ax & Bx) 
 b ≠ c  Ca__________ 
 ~Ac  (Aa & Ba) & Ca 
 Ba_____ 
 ~Bc & ~ Aa 
 
7. ∀x ~(Ax & Bx) 8. ∃x (Ax ∨ Bx) 
 ∃x (Cx ≡ ~Ax)   ∀x [(Ax ∨ Bx) ⊃ Cx] 
 ∃x (~Ax & Cx)  ∃x Cx ⊃ Ca________ 
   Ca 
 
9. ∀x (Ax ⊃ x=a) 10. ∃x (Ax & Bx) 
 ∀x (Bx ⊃ x=b)  ∃x (Bx & Cx) 
 Bc & Ac______  ∀x (Bx ⊃ Cx) 
 Aa & Bb  ∃x (Ax & Cx) 
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