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This thesis considers several statistical models defined on the Farey fractions. Two

of these models, considered first, may be regarded as “spin chains”, with long-range

interactions, another arises in the study of multifractals associated with chaotic maps

exhibiting intermittency. We prove that these models all have the same free energy.

Their thermodynamic behavior is determined by the spectrum of the transfer operator

(Ruelle-Perron-Frobenius operator), which is defined using the maps (presentation

functions) generating the Farey “tree”. The spectrum of this operator was completely

determined by Prellberg. It follows that all these models have a second-order phase

transition with a specific heat divergence of the form C ∼ [ε ln2 ε]−1. The spin chain

models are also rigorously known to have a discontinuity in the magnetization at the

phase transition.

The second part of this work extends our model by introducing an external field

h. From rigorous and more heuristic arguments, we determine the phase diagram and



phase transition behavior of the extended model. Our results are fully consistent with

scaling theory (for the case when a “marginal” field is present) despite the unusual

nature of the transition for h = 0.

The third part of this thesis introduces a new family of partition functions with

the same free energy. These models generalize one of the spin chain by introducing a

new real parameter x. The structure of the Farey fractions then leads to a recurrence

formula which has a direct connection to the operator studied by Prellberg. This

connection provides a new and simple relation of the Contucci and Knauf “canonical”

and “grand canonical” partition functions for any length of spin chain to the function

obtained by the action of the operator on a constant function. In addition, we use

the new partition functions to calculate certain expectation values and correlation

functions.
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CHAPTER 1

INTRODUCTION

In this work we consider several statistical models defined on the Farey fractions. The

first is the Farey Fraction Spin Chain (FFSC), a one-dimensional statistical model first

proposed by (Kleban and Özlük, 1999). This work has spawned a number of further

studies, by both physicists and number theorists (Knauf, 1993; Contucci et al., 1999;

Kallies et al., 2001; Peter, 2001). One can define the model as a periodic chain of sites

with two possible spin states (A or B) at each site. The interactions are long-range,

which allows a phase transition to exist in this one-dimensional system. The Farey

spin chain is rigorously known to exhibit a single phase transition at temperature

βc = 2 (Kleban and Özlük, 1999). The phase transition itself is most unusual. The

low temperature state is completely ordered (Kleban and Özlük, 1999; Contucci et al.,

1999) . In the limit of a long chain, for β > βc, the system is either all A or all B.

Therefore the free energy is constant and the magnetization (defined via the difference

in the number of spins in state A vs. those in state B) is completely saturated over

this entire temperature range. Thus, even though the system has a phase transition

at finite temperature, there are no thermal effects at all in the ordered state.

At temperatures above the phase transition (for β < βc), fluctuations occur, and

the free energy decreases with β. Here the system is paramagnetic. Since there

is no symmetry-breaking field in the model, the magnetization vanishes. Thus the

magnetization jumps from its saturated value in the low temperature phase, to zero

in the high temperature phase (Contucci and Knauf, 1997). This might suggest

a first-order phase transition, but the behavior with temperature is different. In

Chapter 2, we prove that as a function of temperature, the transition is second-order,
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and the same as that which occurs in the Knauf spin chain (see below) and the

“Farey tree” multifractal model. The latter exhibits intermittency, and was studied

by Feigenbaum, Procaccia, and Tél (Feigenbaum et al., 1989).

The Farey fraction spin chain is defined in an unusual way. It is given in terms

of the energy of each possible configuration, rather than via a Hamiltonian. There

is no known way to express the energy exactly in terms of the spin variables (Kle-

ban and Özlük, 1999). Further, numerical results indicate that when one does, the

Hamiltonian has all possible even interactions (and they are all ferromagnetic), so an

explicit Hamiltonian representation, even if one could find it, would be exceedingly

complicated.

In previous work (Kleban and Özlük, 1999), it was proven that the Farey spin

chain free energy (per site, in the infinite chain limit) is the exactly same as the free

energy of an earlier, related ”number - theoretical” spin chain model due to Knauf

(Knauf, 1993; Contucci and Knauf, 1997). In the present work, we extend this result

in several ways.

In Chapter 2 we begin by defining the Farey fraction spin chain and Farey tree

models. We than prove that the free energy for the Farey tree model is the same as

the free energy of the Knauf model. This is established by use of bounds on the Knauf

partition function. In Section 2.3, we examine the Farey model, which is specified by

the maps (presentation functions (Feigenbaum et al., 1989)) that generate the Farey

tree. The free energy in this case is given by the logarithm of the largest eigenvalue

λ(β) of the transfer operator. Some years ago, Knauf (Knauf, 1998) realized that

the free energy of the Knauf model is also given by the logarithm of λ(β), (without

noting the connection to the Farey tree model, however). Combining his result with

our analysis rigorously shows the equality of all four free energies-for the Farey fraction

spin chain, Knauf model, Farey tree model and Farey model. In Section 2.4, by using

the results of (Prellberg and Slawny, 1992), we show that the phase transition is
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continuous (and of second order, i.e., the specific heat is divergent). It also follows

that the phase transition in the Farey model occurs at the Hausdorff dimension of the

Farey tree system, as expected. We conclude by briefly pointing out some connections

with number theory and mentioning some implications of scaling theory for the spin

chain models.

In Chapter 3 we regard the Farey fraction spin chain (FFSC) as a periodic chain

of sites with two possible spin states (A or B) at each site. This model is rigorously

known to exhibit a single phase transition at temperature βc = 2 (Kleban and Özlük,

1999). The low temperature state is completely ordered (Kleban and Özlük, 1999;

Contucci et al., 1999) . In the limit of a long chain, for β > βc, the system is either

all A or all B. Therefore the free energy f is constant and the magnetization m

(defined via the difference in the number of spins in state A vs. those in state B)

is completely saturated over this entire temperature range. Thus, even though the

system has a phase transition at finite temperature, there are no thermal effects at

all in the ordered state. The same thermodynamics occurs in the Knauf spin chain

(KSC) (Knauf, 1993; Contucci and Knauf, 1997; Knauf, 1998; Guerra and Knauf,

1998), to which the FFSC is closely related.

At temperatures above the phase transition (for β < βc), fluctuations occur, and

f decreases with β. Here the system is paramagnetic, since (when the external field

vanishes, see below) there is no symmetry-breaking field. Thus as the temperature

increases m jumps from its saturated value in the ordered phase to zero in the high-

temperature phase (Contucci and Knauf, 1997; Contucci et al., 1999) (see Fig. 1).

(The KSC behaves similarly.)

One-dimensional models with long-range ferromagnetic interactions (Aizenman

et al., 1988; Aizenman and Newman, 1986) are known to exhibit a discontinuity in

m at βc, but in these cases the jump in m is less than the saturation value.
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The discontinuity in m might suggest a first-order phase transition, but in our

model the behavior with temperature is different. However, Chapter 2 proves that

as a function of temperature, f exhibits a second-order transition, and the same

transition occurs in the KSC and the “Farey tree” multifractal model (Fiala et al.,

2003). In beginning the research reported here, our motivation was to see whether the

t

f

t

m

Figure 1: Free energy and magnetization vs. reduced temperature

phase transition in the FFSC, which seems to mix first- and second-order behavior, is

consistent with scaling theory. Indeed, as will be made clear, it is, in the “borderline”

case when a marginal variable is present. In order to see this, we extend the definition

of the FFSC to include a finite external field h. We then determine the phase diagram

and free energy as a function of β and h, using both rigorous and renormalization

group (RG) analysis.

In the following, Section 3.1 defines the model. Then, in Section 3.2 we prove the

existence of the free energy f with an external field, and evaluate f for temperatures

below the phase transition. In Section 3.3 we employ renormalization group argu-

ments to find the free energy and phase diagram for temperatures above the phase

transition. Section 3.4 considers a simple model that has very similar thermodynam-

ics but is completely solvable. In Appendix we present some arguments needed to

prove the existence of f(β, h) in Section 3.2.

Since our results may be of interest to mathematicians who are unfamiliar with

some of the physics employed herein, we pause to include a description of them from a

more mathematical point of view. Section 3.1 defines the model and the quantities of

interest. More specifically, the partition function ZN is a two-parameter weighted sum

over the (matrices defining the) Farey fractions, and the free energy f then follows
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from the limiting procedure defined in (3.4). The main goal of our work is to find the

analytic behavior of f as a function of the real parameters β, the inverse temperature

(so β > 0 is implicit), and h, the external field. Regions of parameter space for

which f is analytic are (thermodynamic) phases, and the lines of singularities that

separate them are phase boundaries. In Section 3.2 we prove that f(β, h) exists,

and compute it exactly at low temperature (for β > βc), which constitutes part of

the ordered phase. Section 3.3 uses renormalization group methods to determine f at

high temperatures (for β near βc and β < βc). Since this method is not rigorous, from

a mathematical point of view the results should be regarded as conjectures. The main

conclusions are the form of the free energy in the high-temperature phase (3.30, 3.31),

the equation for the phase boundary (3.32, 3.33) and the change in magnetization

m = −∂f/∂h (3.35) and entropy s = β2 ∂f/∂β across the phase boundary. We also

find that the ordered phase, with f = ∓h, extends to β < βc when h is sufficiently

large (see Fig. 3). Section 3.3.3 gives predictions for the behavior of ZN as N → ∞
near the second-order point (β = βc and h = 0). This is related to some work in

number theory, but unfortunately not yet directly. Section 3.4 examines an exactly

solvable model with certain similarities to the FFSC.

In the Chapter 4, we extend the definition of the “number - theoretical” partition

function studied by Knauf (see also (Feigenbaum et al., 1989; Artuso et al., 1989))

by introducing a parameter x ∈ R+
0 . Both the “canonical” and “grand canonical”

partition functions arise (Contucci and Knauf, 1997), for different values of x. More

generally, this new parameter allows us to derive a recurrence relation on the length

k of the spin chain. This recurrence formula is directly connected to the operator

studied by Prellberg (cf. Chapter 2) and provides relations which can be used to

calculate certain spin expectation values and correlations. The direct connection also

provides more insight to the relation between the Prellberg operator and the operator

studied by Contucci and Knauf. We explore how the spectrum of these two operators
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are connected. At the end of this chapter we consider the finitely and infinitely

long spin chains and calculate spin expectation values in the Knauf model. We also

calculate the “edge” correlation length (left and right) for this model.
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CHAPTER 2

FREE ENERGY AND PHASE TRANSITION

In this chapter we introduce several one-dimensional statistical models with long-

range interaction defined on set of Farey fractions. We show that the free energy for

all the models is the same.

In order to identify the order of the phase transition in all models, we discuss the

connections of studied models to the transfer operator and its spectrum.

2.1 Partition functions defined on Farey fractions

We use the notation r
(n)
k :=

n
(n)
k

d
(n)
k

for the Farey fractions, where n is the order of the

Farey fraction in level k. Level k = 0 consists of the two fractions
{

0
1
, 1

1

}
. Succeeding

levels are generated by keeping all the fractions from level k in level k+1, and including

new fractions. The new fractions at level k + 1 are defined via d
(2n)
k+1 := d

(n)
k + d

(n+1)
k

and n
(2n)
k+1 := n

(n)
k + n

(n+1)
k , so that

k = 0
{

0
1
, 1

1

}

k = 1
{

0
1
, 1

2
, 1

1

}

k = 2
{

0
1
, 1

3
, 1

2
, 2

3
, 1

1

}
, etc.

Note that n = 1, . . . , 2k + 1. When the Farey fractions are defined using matrices

(spin states) A and B, the level k corresponds to the number of matrices and hence

the length of the spin chain (Kleban and Özlük, 1999).

It follows that the fractions in a given level are always in increasing order. The

Farey fractions differ from the Farey “tree” (Feigenbaum et al., 1989), where only the

new fractions are kept at each succeeding level (see Fig. 2.1).
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1
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0

1

1

2

5

1

4

3

1

3

3

4

3

5

2

2

Figure 2: Farey tree

The partition function for the Farey fraction spin chain (we use just FC for su-

perscript) may be written as (Kleban and Özlük, 1999)

ZFC
k (β) :=

2k∑
n=1

1

(d
(n)
k + n

(n+1)
k )β

, β ∈ R. (2.1)

Note from (2.1) that there are 2k states at level k with energies E
(n)
k = ln(d

(n)
k +

n
(n+1)
k ). The Farey fractions (and hence the energies) can also be defined using the

spin variables A and B mentioned above (Kleban and Özlük, 1999), but this is not

needed here.

For present purposes, it is convenient to use the partition function for the Knauf

model (Contucci and Knauf, 1997), which is rigorously known to have the same free

energy as the Farey spin chain (Kleban and Özlük, 1999). The Knauf partition

function may be defined via

ZK
k (β) :=

2k∑
n=1

1

(d
(n)
k )β

, β ∈ R, (2.2)

so that a chain of length k has 2k states of energy E
(n)
k = ln d

(n)
k . The partition

function can be written as sum of even and odd terms

ZK
k (β) = ZK

k,e(β) + ZK
k,o(β), (2.3)
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where

ZK
k,e(β) :=

2k−1∑
n=1

1

(d
(2n)
k )β

, ZK
k,o(β) :=

2k−1∑
n=1

1

(d
(2n−1)
k )β

.

From the definition of the Farey fractions immediately follows

d
(2n)
k = d

(2n−1)
k + d

(2n+1)
k (2.4)

and

d
(2n−1)
k = d

(n)
k−1. (2.5)

From (4.26) we have

d
(2n)
k > d

(2n−1)
k , d

(2n)
k > d

(2n+1)
k ,

while from (2.5) we obtain ZK
k,o(β) = ZK

k−1(β) so that

ZK
k,e(β) = ZK

k (β)− ZK
k−1(β). (2.6)

The Farey tree model of Feigenbaum, Procaccia and Tél (Feigenbaum et al., 1989)

uses the “Farey tree” rather than the Farey fractions, which means retaining only the

2k−1 even fractions at level k > 1 so we obtain the set

{r(2n)
k |n = 1, . . . , 2k−1, k > 1}.

The Farey tree partition function is defined by

ZF
k (β) :=

2k−2∑
n=1

(
r
(4n)
k − r

(4n−2)
k

)β

. (2.7)

The positive quantities
(
r
(4n)
k − r

(4n−2)
k

)
are the radii of the “balls” in this model.

Note that we can also express this partition function using Farey tree denominators

only. One finds

ZF
k (β) =

2k−2∑
n=1

(
3

d
(4n)
k d

(4n−2)
k

)β

.
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2.2 Equivalence of the Farey tree and Knauf free energies

In this section, we show the equivalence of the free energies of the Knauf and Farey

tree models. We begin by finding bounds for the Farey tree partition function ZF
k (β)

in terms of the Knauf partition function. We are interested in the case β > 0, where

there is a phase transition, but it will be easy to see that the free energies are equal

for all β ∈ R.

The Farey fractions satisfy r
(n)
k − r

(n−1)
k = 1/(d

(n)
k d

(n−1)
k ). This may be shown for

instance using the matrix chain representation in (Kleban and Özlük, 1999). Thus

r
(4n)
k − r

(4n−2)
k = r

(4n)
k − r

(4n−1)
k + r

(4n−1)
k − r

(4n−2)
k

=
1

d
(4n)
k d

(4n−1)
k

+
1

d
(4n−1)
k d

(4n−2)
k

(2.8)

>
1(

d
(4n)
k

)2 ,

and similarly r
(4n)
k − r

(4n−2)
k > 1/

(
d

(4n−2)
k

)2

. From (2.8) we also find

r
(4n)
k − r

(4n−2)
k <

2(
d

(4n−1)
k

)2 . (2.9)

Using (2.7) and (2.8), for β > 0, gives

ZF
k (β) >

2k−2∑
n=1

1(
d

(4n)
k

)2β
, (2.10)

and also ZF
k (β) >

∑2k−2

n=1 1/
(
d

(4n−2)
k

)2β

. Adding these two inequalities we find a lower

bound for the Feigenbaum partition function

ZF
k (β) >

1

2

2k−1∑
n=1

1(
d

(2n)
k

)2β
=

1

2
ZK

k,e(2β). (2.11)

Using the inequality (2.9) and the relation (2.5) gives the upper bound

ZF
k (β) < 2β

2k−2∑
n=1

1(
d

(4n−1)
k

)2β
= 2β

2k−2∑
n=1

1(
d

(2n)
k−1

)2β
= 2βZK

k−1,e(2β). (2.12)
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Thus the Farey tree partition function at β is bounded both above and below by the

even part of the Knauf partition function at 2β.

1

2
ZK

k,e(2β) < ZF
k (β) < 2βZK

k−1,e(2β), β > 0 (2.13)

Similarly, we can find, that

2βZK
k−1,e(2β) < ZF

k (β) <
1

2
ZK

k,e(2β), β < 0. (2.14)

Finally, for β = 0 it is obvious that

ZF
k (β) =

1

4
ZK

k (2β).

The free energy per site is defined by

f(β) :=
−1

β
lim
k→∞

ln Zk(β)

k
. (2.15)

(Recall that the level k corresponds to the length of the spin chain.) We now use

(2.13) to prove that

fF (β) = fK(2β).

where fF refers to the free energy obtained from ZF
k .

For β > 1 one has (Knauf, 1993)

ZK
k (2β)

k→∞−→ ζ(2β − 1)

ζ(2β)
,

which implies that fK(2β) = 0. Also, by (2.6),

ZK
k,e(2β)

k→∞−→ 0,

and using (2.13) gives

ZF
k (β)

k→∞−→ 0.

Since ZF
k (β) > 0,

− ln ZF
k (β)

k
≥ 0 ⇒ fF (β) ≥ 0.
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Note that for β = 1 one has ZF
k (1) ≤ 1, since this partition function reduces to a

simple sum of Farey tree fraction separations (ball lengths), which cannot exceed the

length of the interval [0, 1]. Therefore the inequality still holds (and in fact, as shown

below, fF (1) = 0).

Now clearly

ZK
k,e(2β) >

1

(k + 1)2β

so by (2.13) we find

ZF
k (β) >

1

2

1

(k + 1)2β
,

and

0 ≤ − ln ZF
k (β)

k
<

2β ln(k + 1)

k
+

ln 2

k
.

Thus we have

fF (β) = fK(2β) = 0 for β ≥ 1. (2.16)

The validity of fK(2) = 0 is clear from the treatment in (Knauf, 1998) and the remark

at the end of this section.

For β < 1 we can write

ZK
k,e = ZK

k − ZK
k−1 = ZK

k

(
1− ZK

k−1

ZK
k

)
,

so

− ln ZK
k,e

k
= − ln ZK

k

k
−

ln
(
1− ZK

k−1

ZK
k

)

k
. (2.17)

It is shown in (Contucci and Knauf, 1997) (by arguments using the transfer operator,

see below) that for 0 < β < 1 the free energies obtained from ZK
k and ZK

k,e are the

same, thus for k →∞
ln

(
1− ZK

k−1

ZK
k

)

k
→ 0. (2.18)

(This also can be shown directly by considering the equation

ZK
k (2β) = 1 +

k∑
j=1

Zj,eK (2β),
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which follows from (2.6). For 0 < β < 1 the series is bounded by a geometric series

because of the inequality ZK
k,e > 21−βZK

k−1,e.) For β ≤ 0 it is easy to check that

ZK
k−1,e(2β)/ZK

k,e(2β) ≤ 1/2. Thus (2.18) holds for all β < 1.

Using (2.13) (and, for β ≤ 0, (2.14) and the line below) then establishes

fF (β) = fK(2β) for β < 1. (2.19)

Note that, as mentioned, the Knauf partition function ZK
k (2β) is finite as k →∞

for β > 1 (Knauf, 1993). Using (2.6) and (2.13) one sees immediately that the Farey

tree partition function ZF
k (β) vanishes in this limit for β > 1. At β = 1, it follows

immediately from the definition (2.7) and simple properties of the Farey fractions

that 0 < ZF
k (1) < 1. For β < 1, since fK(2β) < 0 (Contucci and Knauf, 1997) and

using (2.19) and (4.31) it follows that ZF
k (β) is infinite. This establishes rigorously

that the Hausdorff dimension of the set formed by the “balls” is βH = 1, as expected.

Finally, consider (2.13) and the fact, mentioned above, that ZF
k (1) < 1. It follows

that

ZK
k,e(2) =

2k−1∑
n=1

1

(d
(2n)
k )2

< 2,

so that this sum over the “new” Farey denominators is bounded by 2 at all levels.

Since the “new” denominators at level k − 1 become “old” denominators at level k,

one also sees that ZK
k (2) ≤ 2k + 1.

2.3 Transfer operator approach

In this section we consider the transfer operator (Ruelle-Perron-Frobenius operator)

of the Farey map. The previous section shows rigorously that the free energies of the

Knauf and Farey fraction spin chain and Farey tree model are the same. Here we prove

that they (as well as the free energy of the Farey tree model in a certain approximation

specified below) are simply given by the largest eigenvalue of this operator. The next

section considers the asymptotic behavior of this eigenvalue near the phase transition,
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known from the work of Prellberg (Prellberg, 2003), which specifies the order of the

phase transition.

The Ruelle-Perron-Frobenius operator K associated with a map f (piecewise

monotonic transformation of closed interval I) is given by

Kβϕ(x) =
∑

f(y)=x

|f ′(y)|−βϕ(y), β ∈ R, (2.20)

where the sum is over each strictly monotonic and continuous piece of f satisfying

the summation condition. See (Prellberg and Slawny, 1992; Prellberg, 1991) for a

more complete discussion.

The Farey map is defined by (Feigenbaum et al., 1989; Prellberg and Slawny,

1992)

f(x) =





f0(x) = x/(1− x), 0 ≤ x ≤ 1/2,

f1(x) = (1− x)/x, 1/2 < x ≤ 1.
(2.21)

The operator then consists of two corresponding terms K0 and K1 which can be

identified as “intermittent” and “chaotic” parts, respectively (Prellberg, 2003). We

may write Kβ = K0 + K1 where Kiϕ(x) = |F ′
i (x)|βϕ(Fi(x)) and the “presentation

function” (Feigenbaum et al., 1989) Fi is the inverse map of fi (see (2.30) below).

Thus

Kβϕ(x) = (1 + x)−2β

[
ϕ

(
x

1 + x

)
+ ϕ

(
1

1 + x

)]
, β ∈ R. (2.22)

Following the thermodynamic formalism approach (Ruelle, 1978) it was shown in

(Prellberg and Slawny, 1992; Prellberg, 1991) that the largest eigenvalue of Kβ in

(2.22) (defined on the space of functions with bounded variation) is related to a free

energy via f(β) = −β−1 ln λ(β) for β ∈ R. We call this the free energy of the Farey

model.

In this section we consider Kβ acting on L2 and show that the free energy obtained

from its largest eigenvalue is the same as the free energy of the Knauf and Farey tree

model (in its original version or using the approximation below) for 0 < β < 1. In
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the next section, we prove that the free energy of the Farey model in this β range is

also the same. For β > 1, the free energy of any of these models is already known to

be zero (see 2.2 or (Prellberg, 2003)).

The Knauf spin chain at level k−1 may be described by a vector Yk−1(2β) ∈ l2(N0),

the first component of which is the “even” Knauf partition function ZK
k,e(2β). The

“transfer operator” of the Knauf spin chain then maps Yk−1(2β) to the next level:

Yk(2β) = C̃(2β)Yk−1(2β), (2.23)

where C̃(2β) : l2(N0) → l2(N0) and (Contucci and Knauf, 1997)

C̃(2β)i,j = (−1)j 2−2β−i−j






−2β − i

j


 +

i∑
s=0

2s




i

s






−2β − i

j − s





 , (2.24)

(i, j ∈ N0), with the generalized binomial coefficients




a

b


 = (Πb−1

i=1(a− i))/b!, a ∈

R, b ∈ N0, and




a

b


 = 0 if b < 0. Knauf (Knauf, 1998) has further shown that for

0 < β < 1, C̃(2β) has the same largest eigenvalue λ(β) as Kβ : L2((0, 1)) → L2((0, 1)).

The argument involves expanding (2.22) about x = 1 with ϕ(x) =
∑∞

m=0 am(1−x)m.

Doing this, one finds that the action of Kβ on the quantities am (note that am =

(−1)mϕ(m)(1)/m!) is given by C̃T (2β), where T denotes transpose.

In addition, C̃T (2β) is independent of k, so the components of the vector Xk(2β)

(defined using (2.23) with C̃T (2β) replacing C̃(2β)) are proportional to the Taylor

series coefficients of an associated function φ
(β)
k (x). This function therefore satisfies

φ
(β)
k (x) = (1 + x)−2β

[
φ

(β)
k−1

(
x

1 + x

)
+ φ

(β)
k−1

(
1

1 + x

)]
. (2.25)

It is shown in (Contucci and Knauf, 1997) that C̃(2β) (and hence C̃T (2β)) is an

operator of Perron-Frobenius type for 0 < β < 1. Thus λ(β) is a simple eigenvalue

(the same for C̃ or C̃T ). The corresponding eigenvector is strictly positive and unique,
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and may be obtained (for C̃T ) via V (2β) = limk→∞ Xk(2β)/||Xk(2β)||. In addition,

it follows that for 0 < β < 1 the eigenvalue λ(β) > 1 is an analytic function of β, and

its positive normalized eigenvector V (2β) is analytic in β. Hence

φ
(β)
k ∼ λ(β)kφ(β), (2.26)

where φ(β)(x) is the normalized eigenvector of Kβ : L2((0, 1)) → L2((0, 1)) corre-

sponding to V (2β). Substituting this result in (2.25) we get, for 0 < β < 1,

λ(β)φ(β)(x) = (1 + x)−2β

[
φ(β)

(
x

1 + x

)
+ φ(β)

(
1

1 + x

)]
, (2.27)

which is equivalent to (2.22) when λ(β) is the maximal eigenvalue. Then

lim
k→∞

ZK
k,e(2β)

ZK
k−1,e(2β)

= λ(β) (2.28)

together with (4.31), (2.17) and (2.18) give us the Knauf free energy as expected

fK(2β) = − 1

β
ln λ(β), 0 < β < 1. (2.29)

Note that for β ≥ 1, fK(2β) = 0 (see 2.2) and also that f(β) = 0 for β ≥ 1 follows

from the spectrum of the operator Kβ ((Prellberg, 2003), see also the next section).

Thus the free energy of the Farey spin chain, Farey tree and Knauf models are given

by the largest eigenvalue of the Ruelle-Perron-Frobenius operator for β > 0.

To further examine these connections we follow the treatment in (Feigenbaum

et al., 1989). We focus on (2.27) and make use of presentation functions. The Farey

tree can be generated by two presentation functions

F0 =
x

1 + x
, F1 = 1− F0 =

1

1 + x
. (2.30)

Every fraction at each level k > 1 of the Farey tree can be reached by composition

of k functions Fε (ε ∈ {0, 1}) evaluated at x∗ = 1
2
. For example, at level k = 3,

F0 ◦ F1(
1
2
) = 2

5
= r

(4)
3 . So the diameter of every “ball” in the Farey tree model (see

(2.7)) can be written as

r
(4n)
k − r

(4n−2)
k = |Fε1 ◦Fε2 ◦ . . . ◦Fεk−1

(F0(x
∗))−Fε1 ◦Fε2 ◦ . . . ◦Fεk−1

(F1(x
∗))|. (2.31)
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Note that the sequence of presentation functions in the two Farey fractions in (2.31)

is identical except for the Fεk
, i.e. only the presentation functions applied first to x∗

differ. As k →∞, the diameter of the balls converges to zero (this follows easily from

(2.8)). Therefore it is reasonable to suppose that for k sufficiently large each diameter

can be approximated by the derivative of the composed function with respect to x∗.

Then, using the chain rule, (2.31) behaves asymptotically as

r
(4n)
k − r

(4n−2)
k ∼ |F ′

ε1
(Fε2 ◦ Fε3 ◦ . . .)F ′

ε2
(Fε3 ◦ Fε4 ◦ . . .) . . . |. (2.32)

Thus we can write for the partition function

ZF
k ∼ . . .

∑
εk

|F ′
εk

(Fεk+1
◦ Fεk+2

◦ . . .)|β
∑
εk−1

|F ′
εk−1

(Fεk
◦ Fεk+1

◦ . . .)|β . . . (2.33)

Notice that the sum over εk and all lower indexed sums to its right depend only upon

(Fεk+1
◦ Fεk+2

◦ . . .). This motivates the definition

ψ
(β)
k (x) :=

∑
εk

|F ′
εk

(x)|β
∑
εk−1

|F ′
εk−1

(Fεk
(x))|β . . . , (2.34)

where (Fεk
◦ Fεk+1

◦ . . .) is denoted by x. One then finds

ψ
(β)
k (x) =

∑
ε

|F ′
ε(x)|βψ

(β)
k−1(Fε(x)). (2.35)

Note that since each presentation function Fε is a ratio of polynomials, one can

extend the definition of ψ
(β)
k (x) to the whole interval [0, 1]. Substituting for F and

F ′ we obtain (2.25) (with ψk replacing φk). Therefore choosing ψ
(β)
0 (x) > 0 we find

ψ
(β)
k → ψ(β) as k →∞, with the function ψ(β) proportional to φ(β) (the eigenfunction

with the maximum eigenvalue λ(β)). This establishes that the approximation (2.32)

is exact in the limit k →∞, as expected.

Finally, it is interesting to note some connections with number theory. Specifically,

for λ = 1, (2.27) is known as the Lewis equation and has been studied (for complex

β) because of its connection to the Selberg ζ-function and period polynomials (cusp

forms of the modular group) (Lewis and Zagier, 2001). An operator related to Kβ

(2.22) also appears in this context and is called the Mayer operator (Mayer, 1991).
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2.4 Order of the phase transition and discussion

In the preceding, we have shown that the Farey spin chain (Kleban and Özlük, 1999),

the Knauf spin chain (Contucci and Knauf, 1997) and (either version of) the Farey

tree model (Feigenbaum et al., 1989) all have the same free energy. Further, for

0 < β < 1 their free energy is given by the largest eigenvalue of the Farey model

transfer operator acting on L2 (2.22). Here we show that the transfer operator acting

on the space of functions of bounded variation has the same leading eigenvalue in this

β range, which allows us to make use of the results of Prellberg. The corresponding

equality of free energies for β > 1 (where the free energy vanishes) follows from known

results, as remarked in the previous section.

Prellberg has examined the spectrum of the operator Kβ acting on the space

of functions with bounded variation (Prellberg and Slawny, 1992) (details are in

(Prellberg, 1991)). In order to make use of his results, we must show that the largest

eigenvalue in this space is the same as that in L2((0, 1)). To prove this we examine

the corresponding eigenvectors. Expanding ϕ(x), the eigenvector in the L2 space,

about x = 1 as above, one has ϕ(x) =
∑∞

m=0 am(1 − x)m. Thus ϕ(1) is finite,

since the coefficients am in this expansion are proportional to the components of the

eigenvector of C̃T (2β) of largest eigenvalue (see Section 2.3). Furthermore, the am

are all positive, since the eigenvector of C̃T is positive. Therefore ϕ(x) is a (strictly)

decreasing function on [0, 1]. Finally, setting x = 0 in (2.27) shows that ϕ(0) is finite

whenever λ 6= 1. Therefore, ϕ(x) is of bounded variation for 0 < β < 1, and since

both eigenvectors are unique (up to multiplicative constants) their eigenvalues must

coincide in this range of β values.

The result of Prellberg of interest here is

βf(β) = c
1− β

ln(1− β)
[1 + o(1)] , 0 < β < 1,
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where c > 0, and βf(β) = 0 for β ≥ 1. This form for the free energy is equivalent

to that given in (Feigenbaum et al., 1989), as may be seen by use of the Lambert

W -function.

The non-analyticity at β = 1 results in a phase transition of second order, since

the second derivative of f(β) diverges as
[
(1 − β)(ln(1 − β))2

]−1

as β → 1−. This

result agrees with (Contucci and Knauf, 1997), where it is proven rigorously that the

phase transition is at most second order. Note that the largest eigenvalue is discrete

for β < 1. For β > 1, the discrete spectrum disappears and the largest eigenvalue

becomes λ = 1, which is the upper boundary of the continuous spectrum for all β.

Our result for the free energy also has some implications for the number of states

of the spin chain models. The Knauf model partition function may be expressed as a

Dirichlet series (Knauf, 1993)

ZK
k (β) =

∞∑
n=1

φk(n)n−β, (2.36)

where φk(n) is non-zero when n is a Farey denominator at level k. This function

converges from below to the Euler totient function φ(n) as k →∞. Since the energy

of an allowed state is E = ln n, φk(n) gives the number of states of energy E at level

k. The functions φk and φ are very irregular. Our result for the free energy then

shows how the Dirichlet series in (2.36) diverges as k → ∞ for small (but positive!)

(2− β). (Recall that the phase transition in the spin chains appears at βc = 2, since

a factor of 2 appears in comparing with the Farey tree model, see (2.29).) For the

Farey spin chain, an equation with the same form as (2.36) may also be written, with

the same leading divergent behavior. Here the limit of the function corresponding to

φk(n) is not known, though some related information is available (Peter, 2001).

One can also consider the implications of scaling theory for the two spin chain

models. It is known that the magnetization (defined via the difference in the number

of spins in state A vs. those in state B) is one for temperatures below the transition
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and zero above it (Contucci et al., 1999; Contucci and Knauf, 1997). Thus the mag-

netization jumps from its fully saturated value to zero at the transition. This would

lead one to suspect a first-order transition, but as we have seen, the behavior with

temperature is second-order. However, both these results seem to be consistent with

scaling theory, with renormalization group eigenvalues yT = d and yh = d, where d is

the dimensionality, and using (2− β)/ ln(2− β) as the temperature scaling variable.

We examine this in the next chapter.
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CHAPTER 3

THERMODYNAMICS OF THE FAREY

FRACTION SPIN CHAIN

In this chapter we extend the spin chain models by introducing a magnetic field.

Using rigorous results and renormalization group arguments we predict the phase

diagram of these models and show that it is consistent with the scaling theory.

3.1 Definition of the model

The Farey fraction spin chain (FFSC) consists of a periodic chain of N sites (see

Section 2.1 and note that number of sites N corresponds to the level of the Farey

fractions k) with two possible spin states (A or B) at each site. The interactions are

long-range, which allows a phase transition to exist in this one-dimensional system.

Let the matrices

MN :=
N∏

i=1

A1−σiBσi , σi ∈ {0, 1}, (3.1)

where A :=
(

1
1

0
1

)
and B :=

(
1
0

1
1

)
and the dependence of MN on {σi} has been

suppressed. The energy of a particular configuration with N spins in an external field

h is then given as

EN := ln(TN) + h

(
2

N∑
i=1

σi −N

)
with TN := Tr(MN). (3.2)

Thus our partition function is

ZN(β, h) =
∑

{σi}
Tr(MN)−βe−βh(2

PN
i=1 σi−N). (3.3)

Note that ZN(β, 0) = 2ZFC
N (β), where the factor 2 follows from definition of eq. 2.1

and Lemma .1 (see Appendix, so this definition extends the Farey fraction spin chain
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model to non-vanishing external field h. Given the nature of the low-temperature

h = 0 system, it is natural to introduce h in this way.

The free energy is defined as

f(β, h) :=
−1

β
lim

N→∞
ln ZN(β, h)

N
. (3.4)

The existence of the free energy f(β, h) follows from simple bounds using f(β, 0) (see

section 3.2 below).

The definition of the FFSC is somewhat unusual. The partition function is given in

terms of the energy of each possible configuration, rather than via a Hamiltonian. In

fact, there is no known way to express the energy exactly in terms of the spin variables

(Kleban and Özlük, 1999). Further, numerical results indicate that when one does,

the Hamiltonian has all possible even interactions (and they are all ferromagnetic), so

an explicit Hamiltonian representation, even if one could find it, would be exceedingly

complicated.

Note that for h = 0 there are two ground states with energy E = ln 2. The

other 2N − 2 states have energy ln N ≤ E ≤ Nc, where c is a constant. Therefore

the difference between the lowest excited state energy and the ground state energy

diverges as N →∞.

The phase transition in this system (Kleban and Özlük, 1999) occurs in the fol-

lowing way. Divide the partition function into two terms, one due to the two ground

states, and the other (call it Z ′), due to the remaining 2N − 2 states. The system

remains in the ground states, and Z ′ → 0 as N → ∞, until the temperature is high

enough that Z ′ diverges with N . In section 3.4 we examine a simple model that also

exhibits this feature, but is completely solvable.

Our results also apply to the KSC, which has the same thermodynamics as the

FFSC model at h = 0 (see Chapter 2 and (Fiala et al., 2003)). An external field may

be included in the KSC in exactly the same way as described above for the FFSC.

The “Farey tree” model of Feigenbaum et. al. (Feigenbaum et al., 1989) also has the
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same free energy, but it is not clear how to incorporate a field h. Our finite-size results

(see section 3.3.3) do apply when h = 0, however.

3.2 Free energy with an external field

In this section we show rigorously that f(β, h) exists and that

f(β, h) = −|h|, (3.5)

for β > βc.

For h > 0 it is easy to see (from (3.3)) that

2−βeβhN < ZN(β, h) < ZN(β, 0)eβhN . (3.6)

Using the definition of the free energy then gives

−h ≥ f(β, h) ≥ f(β, 0)− h, (3.7)

where f(β, h) is understood to be defined via (3.4). Now f(β, 0) is rigorously known

to exist (Kleban and Özlük, 1999). In addition, we know that f(β, 0) = 0 for β ≥ βc

(Kleban and Özlük, 1999), which implies (3.5) for h > 0 (h < 0 follows similarly).

To see that f(β, h) exists for the range 0 ≤ β < βc we proceed as follows (actually,

our argument applies for all β ≥ 0). We first show that
∣∣∣ log ZN+1

N+1
− log ZN

N

∣∣∣ → 0 as

N →∞. The result then follows by use of (3.6). Now

∣∣∣∣
N log ZN+1 −N log ZN − log ZN

N(N + 1)

∣∣∣∣ ≤
∣∣∣∣
log ZN+1/ZN

N + 1

∣∣∣∣ +
1

N + 1

∣∣∣∣
log ZN

N

∣∣∣∣ ,

and we see by (3.6) and the existence of f(β, 0) that the second term 1
N+1

∣∣ log ZN

N

∣∣ ≤
K

N+1
for some finite constant K. In the Appendix we show that 2−βe−β|h| ≤ ZN+1

ZN
≤

2eβ|h| which completes our proof of the existence of the free energy for all β ≥ 0 and

h ∈ R.
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We also know rigorously that

f(t, 0) ∼ c
t

ln t
+ . . . , (3.8)

where c > 0, t = βc

β
− 1, for t > 0 (see Fig. 1). It follows that f(t, h) must have at

least one singularity between the regions with low and high temperatures, i.e. a phase

transition from the ordered to the high-temperature phase.

Since we can not calculate f(β, h) exactly for β < βc (except for h = 0 and β → βc

), we use another method, in the next section, to examine the thermodynamics.

3.3 Renormalization group analysis

3.3.1 Mean field theory

In mean field theory one assumes that there is an expansion of the free energy of the

form

fMF = a + btM2 + uM4 − ghM + . . . , (3.9)

where M is the magnetization and the “constants” a, b, u and g are weakly dependent

on the reduced temperature t (defined at the end of section 3.2) and external field h.

Note that u > 0 is required for stability, and b > 0, g ≥ 0 in the high-temperature

phase. (The possibility that g = 0 is ruled out below.)

Minimizing (3.9) with respect to M , one obtains the free energy and magnetization

in mean field approximation. Explicitly

1. for t > 0 and h 6= 0 the magnetization

M0 ∼ 1

6

[
u

gh
+

(
2bt

3gh

)3
]− 1

3

(note the limiting cases M0 ∼ 0 for h = 0 and M0 ∼ 1/6(gh/u)1/3 for t = 0)

2. for t < 0 and h 6= 0, but h sufficiently small, the magnetization

M0 ∼
(

b|t|
2u

) 1
2

+
gh

4b|t|
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(however when
(

gh
2u

)2
+ 4

(
bt
6u

)3
> 0, M0 is given by the t > 0 formula). We

include this second case only for completeness. Since our system is completely

saturated at low temperatures this result is not employed in our analysis.

In the following we use the first result in an RG analysis.

3.3.2 Renormalization group analysis

We assume two relevant fields (t and h) and one marginal field (u). These assumptions

are reasonable, since our model has an Ising-like ordered state, the interactions are

(apparently) all ferromagnetic, and there is a logarithmic term in the free energy.

The infinitesimal renormalization group transformation for the singular part of

the free energy is

fs(t, h, u) = e−d`fs(t(`), h(`), u(`)). (3.10)

Because of the marginal field u, the analysis is somewhat more complicated than

otherwise. We follow the treatment of Cardy (Cardy, 1996) (see also Wegner (Wegner

and Riedel, 1973)). The RG equations take the form

du/d` = −xu2 + . . . (3.11)

dt/dl = ytt− ztut + . . . (3.12)

dh/dl = yhh− zhuh + . . . , (3.13)

where we keep only the most important terms. The omitted terms are either higher

order or go to zero more rapidly with ` than those included. From (3.11) we find

(note t = t(0), h = h(0), u = u(0))

u(`) =
u(0)

1 + xu(0)`
. (3.14)

Both t and h have the same functional form, namely

ln(t(`0)/t(0)) = yt`0 − zt

x
ln[1 + xu(0)`0] (3.15)
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and

ln(h(`0)/h(0)) = yh`0 − zh

x
ln[1 + xu(0)`0], (3.16)

where `0 is such that t(`0) = O(1) or h(`0) = O(1). From (3.15) we can write

`0 ∼ 1

yt

ln
t0
t

+
zt

xyt

ln

[
1 +

x

yt

u ln
t0
t

]
, (3.17)

where we assume t0/t À 1. This result together with (3.10) gives us

fs(t, h, u) ∼
∣∣∣∣
t

t0

∣∣∣∣
d
yt

[
1 +

x

yt

u ln
t0
t

]− zt d
yt x

fs(t(`0), h(`0), u(`0)). (3.18)

Since the free energy on the rhs is evaluated at `0, which is far from the critical point,

it can be calculated from mean field theory. Above the critical temperature (t > 0)

with small external field h (h(`0) ¿ t(`0)) we obtain for the free energy

fs(t(`0), h(`0), u(`0)) ∼ a− 3(gh(`0))
2

16bt(`0)
. (3.19)

The relation between h(`0) and t(`0) follows from (3.15) and (3.16). Eliminating h(`0)

allows us to rewrite (3.19) as

fs ∼ a−
∣∣∣∣
t0
t

∣∣∣∣
2

yh
yt

h2

[
1 +

x

yt

u ln
t0
t

]2yh

h
zt

yt x
− zh

yh x

i(
− 3g2

16bt(`0)

)
. (3.20)

Substituting the result into (3.10) gives two terms,

∣∣∣∣
t

t0

∣∣∣∣
d
yt

[
1 +

x

yt

u ln
t0
t

]− zt d
yt x

a, (3.21)

and ∣∣∣∣
t

t0

∣∣∣∣
d
yt
−2

yh
yt

h2

[
1 +

x

yt

u ln
t0
t

]− zt d
yt x

+2yh

h
zt

yt x
− zh

yh x

i(
− 3g2

16bt(`0)

)
. (3.22)

The first term can be compared with the exact result at h = 0 (see (3.8)). It

follows that

d

yt

= 1 =
zt

x
. (3.23)

The second term gives us the dependence on external field. Eliminating t(`0) instead

of h(`0) we obtain

1

t

∣∣∣∣
h

h0

∣∣∣∣
d

yh
+

yt
yh

[
1 +

x

yt

u ln
t0
t

]− zh d

yh x
−yt

h
zh

yh x
− zt

yt x

i(
−3(gh(`0))

2

16b

)
. (3.24)
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Equating the two expressions (3.22) and (3.24) for the same term in the free energy

gives us the RG eigenvalues

d

yt

=
d

yh

= 1, (3.25)

where d is the dimensionality of the system. This is of course one for our model, but

since none of our results require setting d = 1 we leave it unspecified.

Finally we can write down the singular part of the free energy for the high-

temperature phase

fs(t, h, u) ∼
∣∣∣∣
t

t0

∣∣∣∣
[

x

yt

u ln
t0
t

]−1

a− h2

t

[
x

yt

u ln
t0
t

]1− zh
x

(
3g2

16b

)
. (3.26)

Since f < 0 for h = 0 in this phase, (3.26) implies that a < 0.

For the ordered phase we know rigorously that the free energy has no temperature

dependence for h = 0. The spins are all up or all down. When we add an external

field it will break the symmetry and all the spins will be oriented in the field direction.

Thus the free energy at `0 is

fs(t(`0), h(`0), u(`0)) = −|h(`0)|. (3.27)

Proceeding as in the derivation of (3.18) from (3.10) and (3.15) we get

fs(t, h, u) ∼
∣∣∣∣
h

h0

∣∣∣∣
d

yh

[
1 +

x

yh

u ln
h0

h

]− zh d

yh x

fs(t(`0), h(`0), u(`0)), (3.28)

using (3.16), (3.27) and (3.25) then give

fs(t, h, u) ∼ −|h|
[
1 +

x

yh

u ln
h0

h

]− zh
x

. (3.29)

Because the magnetization in the ordered state is completely saturated the logarith-

mic correction must vanish. Therefore zh = 0.

Thus the asymptotic form for the free energy of the high-temperature state is

fs(t, h, u) ∼
∣∣∣∣
t

t0

∣∣∣∣
[

x

yt

u ln
t0
t

]−1

a− h2

t

[
x

yt

u ln
t0
t

](
3g2

16b

)
. (3.30)
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We can recast this result more suggestively as

fs(t, h, u) ∼ fs(t, 0, u)− 1

2
h2χ(t, 0, u), (3.31)

where χ = − ∂2f/∂h2 is the susceptibility. Note that χ ∼ 1/fs which is consistent

with scaling theory, since (using (3.25)), f ∼ t2−α = td/yt = t while χ ∼ t−γ =

t(d−2yh)/yt = t−1. This relation holds regardless of whether we set the dimensionality

d = 1 or not. In addition, the coefficient of t
ln t

for the free energy at h = 0 and

t → 0, t > 0 is known exactly (Prellberg, 1991; Prellberg and Slawny, 1992), so that

the combination of constants yta
|t0|xu

may be determined.

The phase boundary is given by the continuity of the free energy. Now we expect

the ordered phase to exist for β < βc if h is large enough (this is reflected in the

assumption of two relevant fields-if another phase intervened there would be more).

Thus one must equate the two expressions for f . One finds that the phase boundary

between the ordered and high-temperature phase, close to the critical point, follows

|h| ∼ k
t

ln t/t0
, (3.32)

where k =
{

8byt

3xug2

[
1−

√
1 + 3ag2

4bt0

]}
. Since f is quadratic in h in the high-temperature

phase, there are in general two solutions with h > 0. However, the one at larger h is

not physical since it gives rise to a magnetization m > 1 and violates the convexity

of the free energy as well, so we employ the other. In order to find the change in

magnetization across the phase boundary we use (3.32) with constants included

|h| ∼ −t

ln t0
t

{
8byt

3xug2

[
1−

√
1 +

3ag2

4bt0

]}
. (3.33)

In arriving at (3.33), we (as mentioned) chose the root that makes m < 1 in the

high-temperature phase. Note that in the limiting case that 3ag2

4bt0
= −1, m = 1 but

the two roots coincide.

Now from (3.30)

m ∼ h

t

[
x

yt

u ln
t0
t

](
3g2

8b

)
. (3.34)
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Figure 3: Phase diagram

Eliminating the external field using (3.33), and since the magnetization in the ordered

phase takes the values m ∼ ±1, we find

∆m ∼
√

1 +
3ag2

4bt0
. (3.35)

Note that t0 is a constant of order one and recall that a < 0, thus on the phase

boundary the discontinuity in magnetization is constant (and less than one), at least

close to the second-order point (we argue below that g = 0 is not possible in this

model). Now we can look at the change in entropy (per site) s = β2 ∂f/∂β across

the phase boundary. We get

∆s ∼ −2

[
x

yt

u ln
t0
t

]−1
(

a

t0
+

4b

3g2

[
1−

√
1 +

3ag2

4bt0

])
. (3.36)

These results show that the phase transition is first-order everywhere except at h = 0.

In the limiting case when 3ag2

4bt0
= −1, already mentioned, one finds that both

∆m = 0 and ∆s = 0. However, it is easy to see that both the susceptibility χ and

the specific heat will have a discontinuity across the phase boundary.

Note that the magnetization change given by (3.35) exhibits a kind of “discontinu-

ity of the discontinuity”, in that its limiting value as one approaches the second-order
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point is not the same as its value at that point. This is not the case for the entropy

change, or for these quantities in the model examined in section 3.4.

Finally, we argue that g = 0 is not possible in the high-temperature phase. Since

the second derivative of f with respect to h at h = 0 is proportional to both g

and the susceptibility χ, it suffices to demonstrate that χ > 0. It is straightforward

to show that χ is proportional to ΣN
j=1〈s1sj〉 where the spin variables si := 2σi −

1, si ∈ {−1, 1} (cf. (3.1)), and the angular brackets denote a thermal average. Now

the j = 1 term in this sum is 1, and due to the ferromagnetic interactions in the

spin chain, the remaining terms cannot be negative. Note that this argument is not

completely rigorous, since for the FFSC we only have numerical evidence that the

interactions are all ferromagnetic. The KSC, on the other hand, is known to have all

interactions ferromagnetic (Contucci et al., 1999), so that 〈s1sj〉 > 0 follows from the

GKS inequalities.

3.3.3 Finite-size scaling

We can use our results to make some predictions about finite-size (i.e. N large but

N < ∞) effects on the thermodynamics. We make the standard assumption that

the size of our spin chain is a relevant field with eigenvalue 1. Of course, since our

system has long-range interactions the validity of finite-size scaling may be questioned

(Cardy, 1996), but it is still interesting to see the results. The treatment is the same

as in the case of the relevant fields t and h. The renormalization equation for the

inverse size I := N−1 is then

dI/dl = I − zIuI + . . . . (3.37)

Thus we get

fs(t, h, u,N−1) ∼
∣∣∣∣
N0

N

∣∣∣∣
d [

1 + x u ln
N

N0

]− zI d

x

fs(t(`0), h(`0), u(`0), N
−1(`0)). (3.38)
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Note that we do not know the ratio zI/x, however (3.38) gives the form we should

observe. More succinctly, for large N , this result predicts that for small t and h

ln ZN(t, h) ∼ N1−d[ln N ]−p. (3.39)

There is related work in number theory by Kanemitsu (Kanemitsu, 1996) (cf. also

(Shigeru et al., 2000)). This paper studies moments of neighboring Farey fraction

differences, which are similar to the “Farey tree” partition function (Feigenbaum

et al., 1989). At h = 0, the latter has the same thermodynamics as the FFSC

(Chapter 2 and (Fiala et al., 2003). However, (Kanemitsu, 1996) uses a definition of

the Farey fractions that, at each level, gives a subset of the Farey fractions employed

here, and none of the moments considered corresponds to β = 2 (the point of phase

transition). It is interesting that, despite these differences, terms logarithmic in N

appear. More specifically, the sum of mth (integral) moments of the differences goes

as

(ln N)δ2,m

Nm
+ O

(
(ln N)h(m)

Nm+g(m)

)
, (3.40)

for m ≥ 2, with g(2) = 1, g(3) = 2 and g(m) = 3 for m ≥ 4, and h(m) = 1 for

2 ≤ m ≤ 4, h(m) = 0 for m ≥ 5. Now if all the Farey fractions were included (3.40)

would apply to the Farey tree partition function with β = 2 m (Chapter 2 (Fiala

et al., 2003; Feigenbaum et al., 1989)) so that m ≥ 2 would correspond to β ≥ 4. It

would be interesting to determine whether (3.40) applies to the Farey tree partition

function despite this difference, or to extend (3.40) to m = 1 to see if it is consistent

with (3.39).

3.4 1-D KDP model with nonzero external field

In this section we consider the one-dimensional KDP (Potassium dihydrogen phos-

phate) model introduced by Nagle (Nagle, 1968). This model’s thermodynamics and
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energy level structure are similar to the Farey fraction spin chain, but it is easily

solvable. Comparison of the two models thus sheds some light on the FFSC.

The KDP model exhibits first-order phase transitions only. The origin of the

phase transition is infinite rather than long-range interactions. The one-dimensional

A B C D

Figure 4: KDP

geometry of the model is illustrated in Fig. 4. It consists of N cells, and each cell

contains two dots. Each dot represents a proton in a hydrogen bond in the KDP

molecule. Dots can be on the left or the right side of a cell. The energy of a neighbor-

ing pair of cells depends on the arrangement of dots at their common boundary. Only

configurations with exactly two dots at each boundary (e.g. A, B and D in Fig. 4)

are allowed, any other configuration (e.g. C in Fig. 4) has (positively) infinite energy

and is therefore omitted. Of the allowed configurations, only two energies occur, 0

(when there are two dots on the same side of a boundary, as in Fig. 4 D) or ε (when

the dots are on opposite sides, as in Fig. 4 A or B).

Let there be N cells in a chain with periodic boundary conditions. Then there are

two kinds of configurations with finite energy. In the first type of configuration, each

cell has two dots on the same side. There are two such configurations and the total

energy of each is 0. In the second type of configuration, each cell has one dot on the

left and one on the right. There are 2N such configurations and the total energy of

each is Nε. Thus, the partition function is simply

ZN(β) = 2 + 2N exp (−βNε). (3.41)

It follows immediately that f = 0 for βε > ln 2 and f = ε − ln 2
β

for βε < ln 2. Thus

the temperature of the (first-order) phase transition is Tc = ε/(ln 2) and there is a
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latent heat with entropy change ∆s = ln 2. Clearly, the phase transition mechanism

is a simple entropy-energy balance. At low temperatures, the ground state energy

gives the minimal free energy, while in the high-temperature phase the extra entropy

of the additional states gives a lower free energy.

Next, define the magnetization m as the number of sides of cells with both dots

on one side divided by the number of cells N . Then m = 1 for β > βc and m = 0 for

β < βc (so that ∆m = 1 at the phase transition), just as in the FFSC model.

Following the above definition of the magnetization, we introduce an external field

h by adding an energy ±h/2 to each dot, according to whether it is on the right or

left side of the cell. This gives the extra energy of an external field acting along the

chain. Then the new partition function has the form

ZN(β, h) = 2 cosh(βNh) + 2N exp(−βNε). (3.42)

In the ordered phase Z → exp(±βNh). Thus, the free energy f = ∓h, where the

plus sign is for h > 0 and the minus sign for h < 0, exactly as in the FFSC. For the

high-temperature phase Z → exp
[
N(ln 2 − βε)

]
and we get the same free energy as

when h = 0, f = ε− ln 2
β

. The phase boundary is given by h = ±εt (see Fig. 5), where

t = βc

β
− 1 as before. Note the resemblance to the FFSC phase diagram (Fig. 3).

Here, as βε → ln 2, h → 0 as it should, while for β → 0 the field h → ln 2/β.

The entropy per site vanishes everywhere in the ordered phase, while for the high-

temperature phase s = ln 2. Thus, this model has a non-zero latent heat and the

phase transition is first-order everywhere. Note that the change in magnetization

is ∆m = 1 everywhere along the phase boundary between the ordered state and

the high-temperature state. Now for h = 0, the FFSC has two ground states with

all spins up or all spins down and energy independent of length N , just as in the

KDP model. Then, in addition, the FFSC has 2N − 2 states with energies between

ln N and Nc, for some constant c. On the other hand, the KDP model has just one

energy (Nε) for the 2N states corresponding to the 2N − 2 states of the Farey model.



34

h

t

Figure 5: Phase diagram

This might suggest that the states with energies close to ln N are responsible for the

logarithmic factor in the Farey free energy, and thus shift the phase transition from

first to second-order (for h = 0). For h 6= 0 the energy of the ln N states is shifted

by the field h to order N , and the phase transition becomes first-order. However the

mechanism of the FFSC phase transition may be more subtle. The “density of states”

(number of configurations with a given energy) for the FFSC not well-behaved. In

fact it is known rigorously that this quantity, summed over all chain lengths, has a

limit distribution (Peter, 2001).

Note that the free energy just derived is independent of h in the high-temperature

phase. Since this is not what we found for the FFSC, we consider another way to intro-

duce an external field h into the KDP model. As before we have four different states

for each cell. We index them with spin-one variables ti and si (si, ti ∈ {0, +1,−1} )

in each cell as in Fig. 6. Then the energy (for h = 0) can be written

H0 = ε

N−1∑
i=1

t2i t
2
i+1 (3.43)

(assuming, in the sum, that the infinite energy contributions are omitted). The condi-

tions si + ti = ±1 and siti = 0 define the allowed states. We define the magnetization
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field

Figure 6: Notation

per site as

m =
1

N

N∑
i=1

(si + ti). (3.44)

Note that this definition gives a positive (negative) contribution if the upper dot in a

given cell is on the right (left). (Note also that m2 = 1
N2

∑N
i=1(si + ti)

2 + 1
N2

∑
i 6=j(si +

ti)(sj + tj) = 1
N

∑N
j=2(s1 + t1)(sj + tj)+ 1/N .) Hence we can include an external field

as follows

H = H0 − h
∑
i=1

(si + ti) = H0 − hNm. (3.45)

Thus

Z(β, h) = eβNh + e−βNh + e−βεN [2 cosh(βh)]N , (3.46)

and the free energy in high-temperature phase becomes

f(β, h) = ε− ln(2 cosh(βh))

β
(3.47)

or for small h

f ∼ −tε− ln 2

2ε(t + 1)
h2, (3.48)

with t = βc

β
− 1 as above. The phase boundary is given by

βh = ln
(
2 cosh(βh)

)
− βε. (3.49)

For βh ¿ 1 and h > 0, using βc = ln 2
ε

, this gives

h = ε t +
ε ln 2

2
t2 + O(t3), (3.50)
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The phase diagram near the critical point is very close to the previous one (see Fig. 5).

The magnetization in the ordered phase is again independent of temperature, i.e. m =

±1. In the high-temperature phase we have m = tanh(βh). Thus the magnetization

change across the phase boundary close to the critical point is ∆m = 1− t ln 2. The

transition is again first-order, with the entropy change ∆s = ln 2(1− ln 2
2

t2). Results

for h < 0 follow immediately by symmetry.
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CHAPTER 4

TRANSFER OPERATOR, EXPECTATION

VALUES, AND CORRELATION FUNCTIONS

In this chapter we extend the definition of Knauf’s “number theoretical” partition

function by introducing a new parameter x. This allows us to write recurrence re-

lations for the partition functions. These relations are shown to imply a simple and

direct connection between the operator studied by Prellberg (see Chapter 2), and

the transfer operator of Contucci and Knauf. We examine the consequences of this

connection. In addition, the recurrence relations allow us to calculate certain spin

expectation values and correlation functions.

4.1 Definition of the partition function

Let the matrix Mk be any product of k matrices A0 :=
(

1
1

0
1

)
and A1 :=

(
1
0

1
1

)
,

Mk =




a b

c d


 .

Then we can extend the Knauf model (Knauf, 1998) of eq. (2.2) (see also (Kleban

and Özlük, 1999)) by introducing a family of partition functions parametrized by the

variable x (Zagier, 2002)

Z̃k(x, β) :=
∑

(cx + d)−2β, (4.1)

where the sum runs over all 2k permutations of the product of the k matrices A0, A1.

We show in section 4.3 that all of the partition functions (4.1) have the same free

energy.
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Now consider the partition function of the length k+1 (i.e. Mk+1 = MkA0+MkA1,

where MkA0 =
(

a+b
c+d

b
d

)
and MkA1 =

(
a
c

a+b
c+d

)
). From (4.1) we find the recurrence

equation

Z̃k+1(x, β) = (1 + x)−2βZ̃k

(
x

1 + x
, β

)
+ Z̃k(x + 1, β) (4.2)

with the initial condition Z̃0(x, β) ≡ 1 (i.e. M0 =
(

1
0

0
1

)
). The variable x ∈ R+

0 is a

parameter which changes the energy of each configuration and β ∈ R+
0 is the inverse

temperature.

It is convenient to define, as in number theory (Zagier in (Waldschmidt et al.,

1992)) the action of the matrix M =
(

a
c

b
d

)
on any function f(x)

f(x)|M := (cx + d)−2βf

(
ax + b

cx + d

)
. (4.3)

For example, consider the action of the matrix A0 on a constant function

1(x)|A0 = (1 + x)−2β, (4.4)

where 1(x) ≡ 1.

It is easy to check that our partition function Z̃k(x, β) can be written as

Z̃k(x, β) =
2k∑
i=1

1(x)|Mi, (4.5)

where Mi = Πk
j=1Aτj(i) with τj(i) ∈ {0, 1}. The matrices A0 =

(
1
1

0
1

)
, A1 =

(
1
0

1
1

)
can

be viewed as a spin up or spin down, respectively. Note that each product of these two

matrices defines parent fractions of the fraction in the level k of the Stern-Brocot tree

(Graham et al., 1994). The subset of these fractions between zero and one are called

Farey fractions. They are generated by the products which start with A0 (Kleban

and Özlük, 1999).

In the following we will use an abbreviated form of (4.5)

Z̃k(x, β) = 1(x)|(A0 + A1)
k = 1(x)|A0(A0 + A1)

k−1 + 1(x)|A1(A0 + A1)
k−1, (4.6)

where the addition must be applied after the multiplication of the matrices!
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The Knauf “canonical” partition function ZK
k (s) (see (Knauf, 1998)) the definition

and note that s = 2β) is equal to

ZK
k (2β) = 1(x)|A0(A0 + A1)

k|x=0. (4.7)

Similarly, the grand canonical partition function of Contucci and Knauf (Contucci

and Knauf, 1997) corresponds to (4.7) with x = 1 on the right hand side.

Let

Zk(x, β) := 1(x)|A0(A0 + A1)
k. (4.8)

(4.8) is than a direct generalization of ZK
k . Then using 1(x)|A1 = 1(x) and (4.6) we

get

Z̃k(x, β) = Zk−1(x, β) + 1(x)|A1(A0 + A1)
k−1 = 1 +

k−1∑
i=0

Zi(x, β). (4.9)

Thus (4.9) relates two partition functions satisfying the recurrence formula (4.2) with

initial conditions Z0(x, β) = (1 + x)−2β and Z̃0(x, β) = 1(x). In the next section we

will study the invariance of Z0(x, β) under the action of the matrix P =
(

0
1

1
0

)
(Pauli

matrix).

4.2 Spin orientation invariance and their consequences

In this section we consider the consequences of the spin flip transformation generated

by P =
(

0
1

1
0

)
. In addition we observe that there is subset of the partition function

which exhibits simple transformation property and the rest of partition functions are

directly connected to this special subset.

The action of P on a function f(x) is

f(x)|P = x−2βf(1/x). (4.10)

In our case, the matrix P simply exchanges the spin orientation, i.e. the matrix A0

and the matrix A1

A1 = P A0 P, (4.11)



40

where P 2 = 1. Thus A0 and A1 are conjugate. Note that a function f(x) invariant

under (4.10) (i.e. f(x) = x−2βf(1/x)) can be called even, since, using the substitution

ey = x (x is non-negative) to define g(y) = eβf(ey), (4.10) becomes g(y) = g(−y).

Thus our initial condition (1 + x)−2β is even. Consequently, for all for all k ≥ 1,

x ∈ R+ and β ∈ R+
0 the partition function Zk(x) is even

Zk(x)|P = (1 + x)−2β|(A0 + A1)
kP = (1 + x)−2β|P 2(A0 + A1)

k = Zk(x). (4.12)

In the second equality we used the evenness of our initial condition and the fact that

the set of all terms in (A0 + A1)
kP is the same as the set P (A0 + A1)

k.

Now consider the terms in (4.2). Using the invariance property of our partition

function we can write Zk−1(x)|A0 = Zk−1(x)|P A0 and Zk−1(x)|A1 = Zk−1(x)|P A1.

Thus

(1 + x)−2βZk−1

(
x

1 + x
, β

)
= x−2βZk−1

(
1 + x

x
, β

)
(4.13)

and

Zk−1(x + 1, β) = (1 + x)−2βZk−1

(
1

1 + x
, β

)
(4.14)

for all k ≥ 1, x ∈ R+ and β ∈ R+
0 . Combining (4.13), (4.14) and (4.2) gives us four

different recurrence formulas. For instance

Zk(x) = (x + 1)−2β

[
Zk−1

(
x

x + 1

)
+ Zk−1

(
1

x + 1

)]
(4.15)

which we will use in section 4.3. In addition we can see that the matrix P can be put

in front of the matrix A0 or A1 in the expression (1+x)−2β|(A0 +A1)
k and not change

the partition function Zk(x) (for example (1+x)−2β|(A0+A1)
l(P A0+A1)(A0+A1)

r =

(1 + x)−2β|(A0 + A1)
k for any k, l, r ≥ 0 such that l + r + 1 = k). On the other hand

if we put the matrix P after only the matrix A0 or A1 we get a new function. Let

Z l↑r

k (x) =
1

2
(1 + x)−2β|(A0 + A1)

l(A0 + A1P )(A0 + A1)
r (4.16)

and

Z l↓r

k (x) =
1

2
(1 + x)−2β|(A0 + A1)

l(A0P + A1)(A0 + A1)
r, (4.17)
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with l + r + 1 = k. Using (4.11) we then have

Z l↑r

k (x) = Zl(x)|A0(A0 + A1)
r (4.18)

and

Z l↓r

k (x) = Zl(x)|A1(A0 + A1)
r (4.19)

respectively, which motivates the notation in (4.16) and (4.17). The arrows ↑ and

↓ refer to the interpretation of A0 and A1, as up and down spins, respectively. In

addition note that

Z l↑r

k (x) + Z l↓r

k (x) = Zk(x). (4.20)

We will study these functions in section 4.4. We conclude with an observation

which follows immediately from (4.18) and (4.19). The probability of a spin up at

position l +1 from left is equal to the probability of a spin down at the same position

for model with different x. The relation is

Z l↑r

k (x)

Zk(x)
=

Z l↓r

k (x)|P
Zk(x)

=
x−2βZ l↓r

k (1/x)

Zk(x)|P =
Z l↓r

k (1/x)

Zk(1/x)
(4.21)

for all for all k ≥ 1, x ∈ R+ and β ∈ R+
0 . Note that for x = 1 these probabilities are

equal. For other values of x, since the magnetization is zero, the up and down spins

probabilities are equal when l and r are sent to infinity (see section 4.4).

4.3 Connection to the transfer operator

In Section 2.3 we defined the transfer operator on the Farey map (see (2.21) and

(2.22)). The transfer operator is formally given by

Kβ ϕ(x) = |F0
′(x)|βϕ(F0(x)) + |F1

′(x)|βϕ(F1(x)). (4.22)

Therefore, the k-fold iterated operator Kβ ϕ(x) consists of 2k terms of the form

|(Fτ1 ◦ Fτ2 ◦ . . . ◦ Fτk
)′(x)|βϕ(Fτ1 ◦ Fτ2 ◦ . . . ◦ Fτk

(x)) (4.23)
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with τj ∈ {0, 1}. As we are dealing with iterations of Möbius transformations of the

form ax+b
cx+d

with determinant ±1, we can alternatively consider multiplication of the

associated matrices. We find for instance

Kk
β1(x) =

∑

{τj}
(cx + d)−2β

{τj} =
2k∑
i=1

1(x)|M̃i, (4.24)

where c and d are just the bottom left and right entries, respectively,

M̃i =
k∏

j=1

Fτj(i) where F0 =




1 0

1 1


 and F1 =




0 1

1 1


 . (4.25)

Note that A0 = F0 and F1 = P A1.

When we apply Kβ only once on the constant function 1(x) we obtain 2(1+x)−2β.

That is exactly twice the initial condition of the partition function Zk(x) (see (4.8)).

In addition Kβ increases the level k of the partition function Zk(x) by one as follows

from (4.15 and 4.22). Thus

Kk
β1(x) = 2Kk−1

β (1 + x)−2β = 2Zk−1(x). (4.26)

For x = 0, (4.26) connects the Knauf model (4.7) (Knauf, 1998) and the transfer

operator Kβ

Kk
β1(x)|x=0 = 2 ZK

k−1(2β). (4.27)

Note that (4.27) simplifies and extends the results of Contucci and Knauf (Knauf,

1998). These authors define an operator C̃(2β) (see Section 2.3) whose non-degenerate

leading eigenvalue gives the free energy of “grand canonical” partition function Zk(x =

1, β) and the canonical case Zk(x = 0, β) as in (4.34) below. These authors also

connect the largest eigenvalue of C̃(2β) with the largest eigenvalue of the equation

λ(β)f(x) = f(x + 1) + x−2βf(1 + 1/x), (4.28)

and in fact their proof uses a Taylor series expansion of ϕ(x) (in (4.22)) at x = 1 and

it can be shown that their operator has the same spectrum as (4.22) on L2 space.



43

However, their result does not include direct connection of the partition functions

and (4.22) or (4.28).

It is also interesting to consider (4.27) for β > βc = 1. In that case, one has

lim
k→∞

Kk
β1(x)|x=0 = lim

k→∞
2 ZK

k−1(2β) = 2
ζ(2β − 1)

ζ(2β)
, (4.29)

where ζ is the Riemann-ζ function (Knauf, 1993).

For β < βc = 1, the leading eigenvalue λ(β) > 1 of Kβ (Prellberg, 2003) is

non-degenerate and belongs to the discrete spectrum. Thus we can define a(x, β) as

a(x, β) = lim
k→∞

Zk(x, β)

λk(β)
< ∞. (4.30)

Note that since the spectrum of Kβ is independent of x, the free energy

f(β) :=
−1

β
lim
k→∞

ln Zk(x, β)

k
(4.31)

depends only on the inverse temperature β < βc (Chapter 2 and (Fiala et al., 2003;

Knauf, 1998). Thus (as we have already noted for x = 0 in Chapter 2 and (Fiala

et al., 2003)) the phase transition is second-order for all x ≥ 0. This follows from the

result of Prellberg (Prellberg and Slawny, 1992; Prellberg, 1991), already quoted in

Section 2.4,

βf(β) = c
1− β

ln(1− β)
[1 + o(1)], β → 1−, (4.32)

where c > 0 (for more discussion about the phase transition see Chapter 2 and (Fiala

et al., 2003)). The partition function Zk(x, β) can be written exactly as (4.1), except

that one only sums over a subset of c and d. Thus

(1 + (k + 1)x)−2β ≤ Zk(x, β) ≤ Zk(0, β) = ZK
k (2β). (4.33)

Since the Knauf free energy vanishes for β ≥ βc, so must the free energy obtained

from Zk(x, β). Now since the leading eigenvalue of Kβ is λ(β) = 1 for all β ≥ βc we

can write for all temperatures

f(x, β) =
−1

β
ln λ(β). (4.34)
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Note that the leading eigenvalue changes its character at the critical point. Below

the critical temperature it belongs to a discrete spectrum and above the critical

temperature it is the upper limit of the continuous spectrum (for more details about

the spectrum see (Prellberg, 2003)).

The sub-leading eigenvalue in the spectrum (Prellberg, 2003) is equal to one for all

temperatures. This is consistent with our results Chapter 3 and (Fiala and Kleban,

2004) based on scaling and renormalization group arguments. For a one-dimensional

system the scaling arguments provide the relation between singular part of free energy

fs and correlation length ξ

fs ∝ 1

ξ
. (4.35)

If we assume that our partition function goes as

Zk(x, β) = λka(x) + λk
1a1(x) + . . . , (4.36)

we obtain using (4.31)

fs ∝ ln λ (4.37)

and from definition of correlation length

ξ =
C

ln λ− ln λ1

(4.38)

where C is positive constant. We can see that this implies that the sub-leading

eigenvalue λ1(β) = 1 for β ≤ βc consistent with Prellberg’s results.

In addition, note that the eigenfunction a(x, β) is even

a(x, β) = x−2βa(1/x, β). (4.39)

Using this fact and (4.22) we can write

λ(β)a(x, β) = a(x + 1, β) + (1 + x)−2βa

(
x

x + 1
, β

)
. (4.40)

Applying (4.39) and (4.40) with the x = 0, x = 1 we obtain

a(1, β) = (λ(β)− 1)a(0, β), (4.41)
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a(2, β) =
λ(β)

2
a(1, β) =

λ(β)

2
(λ(β)− 1)a(0, β), (4.42)

respectively. We will make extensive use of (4.41) and (4.42) below.

4.4 Expectation values and correlations

In this section we calculate various spin expectation values for finite chain and corre-

lation functions for chains of finite length. First, consider the expectation value for

spin up

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x :=
Z l↑r

k (x)

Zk(x)
, (4.43)

and similarly for spin down. Now using (4.18), and (4.20) we find

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x =
Zl(x)|A0(A0 + A1)

r

Zl(x)|A0(A0 + A1)r + Zl(x)|A0(A0 + A1)rP
. (4.44)

The question is if we can relate the two terms in denominator at least for some values

of x. We already know from (4.21) that for x = 1 these terms are equal. There is a

simple explanation for this. First of all the P matrix in the end of every chain Mi just

switches the columns of these matrices. (4.3) is invariant under change of columns

for x = 1. Thus the probability to find spin up (or down) at any location of the spin

chain with x = 1 is equal 1/2

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x=1 = 〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
r

〉x=1 =
1

2
(4.45)

Thus, in this case, there are no finite size or edge effects at all. Another quite simple

result is for x = 0 (the Knauf model). The partition function at level k is

Zk(0) = (Zl(x)|A0(A0 + A1)
r + Zl(x)|A0(A0 + A1)

rP )|x=0 = 2Z l↑r

k (0) + Zl(1)−Zl(0).

(4.46)

This result follows directly from the structure of the Farey fractions together with the

action of the matrix P . Alternatively we can prove it by using (4.18), (4.19), which
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we now proceed to do. First express (4.18) as the sum of one level shorter chains

Z l↑r

k (x) = (1 + x)−2βZ l↑r−1

k−1

(
x

1 + x

)
+ Z l↑r−1

k−1 (x + 1). (4.47)

For x = 0 (4.47) becomes

Z l↑r

k (0) = Zl(0) +
k−1∑

i=l+1

Z l↑i−l−1

i (1). (4.48)

Similarly we find

Z l↓r

k (0) = Zl(1) +
k−1∑

i=l+1

Z l↓i−l−1

i (1). (4.49)

Finally we add the above expressions (see(4.20)), eliminate equal sums (see (4.21))

and (4.46) follows.

Now the expectation value for spin up at x = 0 can be written as

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x=0 =
1

2− Zl(0)−Zl(1)

Zl↑r
k (0)

=
1

2
+

K

4
+ O(K2), (4.50)

where

K =
Zl(0)− Zl(1)

Zl(x)|A0(A0 + A1)r|x=0

. (4.51)

The constant K ≥ 0 is less than 1 for all l, r ≥ 0 as follows from Zl(x)|A0(A0 +

A1)
r|x=0 ≥ Zl(0) ≥ Zl(1) > 0 for all l, r ≥ 0 and β ≥ 0. The first inequality follows

immediately from the fact that the sum Zl(x)|A0(A0 + A1)
r|x=0 of positive terms

includes the term Zl(x)|Ar+1
0 |x=0 = Zl(0). The second inequality follows directly

from the monotonicity of our partition function Zl(x). Note that for β > 0 the

partition function is a strictly decreasing function of x. Thus the spin at any position

for finite temperature T and any finite length of the spin chain has greater probability

to be up

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
r

〉x=0 > 〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
r

〉x=0. (4.52)

This is probably an effect of the “hidden” spin up in our initial condition (1+x)−2β =

1(x)|A0 (where the matrix A0 represents spin up), assuming that the spin interaction

are all ferromagnetic, as in the Knauf model (Knauf, 1993).
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Now we consider the two-spin correlation function. Let

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x =
Z l↑n

k (x)|A0(A0 + A1)
r

Zk+r+1(x)
, (4.53)

where as before k = l + n + 1.

The partition function Zk+r+1(x) for a spin chain of length l + n + r + 2 can be

divided to four terms (corresponding to four configurations of two spins)

Z l↑n

k (x)|Ai(A0 + A1)
r

and

Z l↓n

k (x)|Ai(A0 + A1)
r

where i ∈ {0, 1}. Using the matrix P (as before) gives

Z l↑n

k (x)|Ai(A0 + A1)
r = Z l↓n

k (x)|Ai+1(mod 2)(A0 + A1)
rP, (4.54)

where i ∈ {0, 1}. We now check if we can get some results for particular values of x.

As mentioned, for x = 1 each spin has equal probability to be up and down without

any edge effect (i.e. for any l, r ∈ Z+
0 ). Thus we can expect the expectation value for

two spins up to be the same as for two spins down. This in fact follows directly from

(4.54). That result implies,

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x=1 = 〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
n

↓ . . .︸︷︷︸
r

〉x=1 (4.55)

and

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↓ . . .︸︷︷︸
r

〉x=1 = 〈 . . .︸︷︷︸
l

↓ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x=1 (4.56)

where l, n, r ∈ Z+
0 . In the case of one spin (4.45) shows that the expectation value

does not change under translation of the spin. The two spin expectation value is not

translationally invariant but it has following symmetry

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
n

↓ . . .︸︷︷︸
r

〉x=1 = 〈 . . .︸︷︷︸
r

↓ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
l

〉x=1 (4.57)
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as can be seen by writing the numerator of (4.57) as

Z l↑n

k (x)|A1(A0 + A1)
r = (1 + x)−2β|(A0 + A1)

lA0(A0 + A1)
nA1(A0 + A1)

r

=
2l+n+r∑

i=1

[(a + c)x + b + d]−2β
i , (4.58)

where a, b, c, d are entries of the ith matrix from the set (A0+A1)
lA0(A0+A1)

nA1(A0+

A1)
r. Thus for x = 1 the sum does not change under transposition of matrices and

we get (4.57).

4.5 Infinitely long spin chain

In this section, we consider expectation values and correlations for infinitely long

chains. First note that by (4.45), at x = 1, the spin expectation value has no edge

effects for any finite chain. Thus, allowing l →∞ and r →∞, a spin up (down) has

still probability one half. (4.50) shows that this is not true at x = 0 (Knauf model).

In order to see the edge effect at the right side of an infinitely long chain we go

back to (4.46) and let l → ∞ . Using (4.30) and the properties of the eigenfunction

a(x) we get

λr+1a(0) = 2 a(x)|A0(A0 + A1)
r|x=0 + a(1)− a(0) (4.59)

for all r ≥ 0. We can write the expectation value for a spin at r + 1 position of the

infinitely long chain using (4.41)

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
r

〉x=0 =
1

2
+ λ(β)−(1+r) − λ(β)−r

2
, (4.60)

where the eigenvalue λ ∈ (1, 2] for β ∈ [0, βc). Note that a similar expression for

the spin down follows since their sum must be one. We can use the above formula

at the critical temperature (when λ(βc) = 1) by taking the limit β → βc. Then the

probability of a spin up is 1 for any finite distance r from the right (this can also be

shown directly from (4.50) - showing that K → 1 when β → βc then l → ∞). On

the other hand for any β < βc the spin up probability goes to one half as r →∞.
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Note that (4.60) also gives the right edge correlation length ξr and

ξr =
1

ln λ
=

1

fs

. (4.61)

This interesting equation directly relates edge and bulk behaviour, since the bulk

correlation length ξ ∝ 1
fs

, see Chapter 3 and (Fiala and Kleban, 2004), thus

ξr ∝ ξ ∝ ln ε

ε
(4.62)

as β → βc, where ε = βc

β
− 1.

Now the limit r →∞, keeping l finite. Using (4.46) we can write

lim
r→∞

Zl(x)|A0(A0 + A1)
r

λr
=

λl+1

2
a(0) (4.63)

for any λ > 1. Note that 0 < a(0) < ∞ for λ ∈ (1, 2] ((4.77) below). Using (4.50)

and (4.63) we obtain

〈 . . .︸︷︷︸
l

↑ . . .︸︷︷︸
∞
〉x=0 =

1

2
(4.64)

for all l ≥ 0 and β < βc. Thus the left edge effects on one spin vanish.

Next we look at the two spin case where left part of the spin chain is going to

infinity. Using (4.18), (4.30) and (4.53) we get

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x =
a(x)|A0(A0 + A1)

nA0(A0 + A1)
r

λn+r+2a(x)
. (4.65)

It is convenient to define two functions of x and β (note that as for a(x) we do not

explicitly indicate the β dependence),

Un(x) = a(x)|A0(A0 + A1)
n (4.66)

for spin up and similarly for spin down

Dn(x) = a(x)|A1(A0 + A1)
n. (4.67)

Clearly for all n ≥ 0 and 0 ≤ β < βc = 1

Un(x) + Dn(x) = λn+1a(x) (4.68)
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and using (4.11), and (4.39)

Un(x) = x−2βDn(1/x). (4.69)

Note that for the chain with infinite long beginning we can write

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

〉x =
Un(x)

Un(x) + Dn(x)
(4.70)

and for x = 1 it immediately follows that (since by (4.69) Un(1) = Dn(1))

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

〉x=1 =
1

2
(4.71)

as already shown (see (4.64). The result (4.60) for one spin at x = 0 follows from

equation (4.59) which we rewrite as

Un(0) =

(
1

2
(λ(β)n+1 − λ(β)) + 1

)
a(0), (4.72)

and similarly

Dn(0) =

(
1

2
(λ(β)n+1 + λ(β))− 1

)
a(0). (4.73)

Now return to equation (4.65) for r →∞. First we write (4.65) as

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑ . . .︸︷︷︸
r

〉x =
Un(x)|A0(A0 + A1)

r

λn+r+2a(x)

=

∑
Un(ax+b

cx+d
)(cx + d)−2β

λn+r+2a(x)
, (4.74)

where the sum has 2r terms with a, b, c and d from A0Mr =
(

a
c

b
d

)
. Note that we start

with matrix A0 and thus ax+b
cx+d

≤ 1 for all x ∈ R+
0 . The maximum value of Un(x) is at

x = 0 and minimal value at x = 1. It follows directly from

Un(x) = lim
k→∞

2k+n∑
i=1

(cx + d)−2β
i

λ(β)k
, (4.75)

where
(

ai

ci

bi

di

)
∈ {A0(A0 + A1)

kA0(A0 + A1)
n}. Thus we can write

Un(1)Zr(x)

λn+r+2a(x)
≤ 〈 . . .︸︷︷︸

∞
↑ . . .︸︷︷︸

n

↑ . . .︸︷︷︸
r

〉x ≤ Un(0)Zr(x)

λn+r+2a(x)
(4.76)
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for all r ≥ 0 and all x ∈ R+
0 . In the limit r → ∞ we get, using (4.72) and Un(1) =

λn+1a(1)/2 (see (4.68) and (4.69))

(λ− 1)
a(0, λ)

2λ
≤ 〈 . . .︸︷︷︸

∞
↑ . . .︸︷︷︸

n

↑ . . .︸︷︷︸
∞
〉x ≤

(
1 +

2− λ

λn+1

)
a(0, λ)

2λ
. (4.77)

Note that since the correlation length ξ = 1
ln λ

, the n-dependence of the upper bound

in (4.77) is what one expects for the correlation function. We have not been able to

prove this, however.

Now we will explore some edge effects (i.e. small r) for x = 0. When r = 0 we

have

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑〉x=0 =
Un(0)

λn+2a(0)
=

(
1 +

2− λ

λn+1

)
1

2λ
. (4.78)

Similarly

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↑〉x=0 =
Dn(0)

λn+2a(0)
=

(
1− 2− λ

λn+1

)
1

2λ
, (4.79)

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↓〉x=0 =
Un(1)

λn+2a(0)
=

λ− 1

2λ
, (4.80)

and

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↓〉x=0 =
Dn(1)

λn+2a(0)
=

λ− 1

2λ
. (4.81)

Note that both (4.80) and (4.81) are completely independent of the spin separation

n.

We can observe that all above is based on our knowledge of Un(x) at two points

x = 0 and x = 1 (similarly for Dn(x)). It is easy to find generalizations of this

property. We need combinations of spins for which the corresponding product of

matrices A0 and A1 provides products with b = 0 or b = 1 and d = 1. This is true for

chain of A0 matrices of any length and chains starting with A1 following by a chain

of A0 matrices of any length. These two cases give us

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↑ . . . ↑ . . . ↑︸ ︷︷ ︸
r

〉x=0 =

(
1 +

2− λ

λn+1

)
1

2λr
(4.82)
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and

〈 . . .︸︷︷︸
∞

↑ . . .︸︷︷︸
n

↓ ↑ . . . ↑ . . . ↑︸ ︷︷ ︸
r

〉x=0 =
λ− 1

2λr+1
. (4.83)

Similarly we get

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↑ . . . ↑ . . . ↑︸ ︷︷ ︸
r

〉x=0 =

(
1− 2− λ

λn+1

)
1

2λr
(4.84)

and

〈 . . .︸︷︷︸
∞

↓ . . .︸︷︷︸
n

↓ ↑ . . . ↑ . . . ↑︸ ︷︷ ︸
r

〉x=0 =
λ− 1

2λr+1
. (4.85)

Note that (4.83) and (4.85) are independent of n. Also note that to calculate any

of (4.78) - (4.85) could require knowing the four values Un(1/2), Un(2), Dn(1/2) and

Dn(2). Using (4.69) accounts for two of these, in addition (4.68) removes one more,

but are left with one unknown value. For general x, one has four unknown quantities.
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CHAPTER 5

CONCLUSIONS AND SUGGESTIONS FOR

FURTHER WORK

In this thesis, we have examined the thermodynamics of several statistical models

defined on the Farey fractions. There are several main results. In Chapter 2, we

introduce several models, and that they all have the same free energy. This means, in

particular, that they all have a single phase transition, which is (barely) second-order.

The asymptotic behavior of the free energy at the transition is determined by making

use of some results of Prellberg (Prellberg and Slawny, 1992; Prellberg, 1991). In

Chapter 3, we extend the spin chain models by introducing a magnetic field. Using

both rigorous and non-rigorous methods, we determine their phase diagram. Finally,

Chapter 4 introduces a partition function that extends the “number-theoretical” spin

chain of Knauf (Knauf, 1993, 1998). This allows us to establish a connection with

the operator studied by Prellberg (in the context of dynamical systems) in a new and

simple way. We prove that this operator is the transfer operator for these extended

partition functions. Finally, the recurrence relations satisfied by the extended par-

tition function allow us to calculate certain spin expectation values and correlation

functions for the “number-theoretical” (Knauf) spin chain.

In the future, we plan to complete work with T. Prellberg on a calculation showing

that a certain cluster approximation for the transfer operator Kβ of Chapter 4, leads

to the same phase diagram as we obtained (Chapter 3) using renormalization group

arguments. In addition, we plan to make use of the methods of Chapter 4 to examine

the behaviour of the function a(x) at the phase transition. At x = 0 the limit of
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(4.30) diverges, which is consistent with the divergence of ϕ(x) = 1
x
. This function

is an eigenfunction of Kβ=1 with eigenvalue 1 if we consider the appropriate Hilbert

space (Mayer and Roepstorff, 1987; Mayer, 1990). Note that 1
x

is not normalizable in

the Hilbert space of Prellberg (Prellberg, 2003) and corresponds to the l∞ eigenvector

of Contucci and Knauf operator. We believe that with proper normalization of (4.30)

it should be possible to prove that for x > 0 we obtain the function 1
x
. This would

imply that the “number-theoretical” spin chain models, at the critical temperature,

are in a completely ordered state (all spins up or down). It would also imply that

lim
k→∞

(1 + n)

Zk(1, 1)

2k−1∑
i=1

cn
i + dn

i

(ci + di)2+n
= 1 (5.1)

for all n ≥ 0, where ci and di are neighbour denominators of Farey fractions in the

level k. Note that Zk(1, 1) =
∑2k

i=1
1

(c+d)2i
, thus for n = 0 the above sum is one for

all k > 0. Let us finish with two observations we have made when we analysed the

conjecture (5.1). First, for every x > 0 and k > 0

2k∑
i=1

(
1

(cx + d)i(ax + b)i

+
1

(c + dx)i(a + bx)i

)
=

1

x
, (5.2)

where ai

ci
and bi

di
are the neighbour Farey fractions at the level k. The second obser-

vation is that there are solutions of the functional equation

g(x, y) + g(1/x, 1/y) = 1, (5.3)

which are generated by the action of the operator Kk
β=1 on (x + y)−1. Thus for every

k ≥ 0

gk(x, y) := Kk
β=1(x + y)−1,

where the variable y is treated as a parameter, is a solution of the functional equa-

tion (5.3). For example, the first two solutions are g0(x, y) = x
x+y

, g1(x, y) =

x
(

1
1+x+y

+ 1
(1+x)(x+xy+y)

)
.
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APPENDIX

BOUNDS FOR
ZN+1
ZN

We write the partition function (3.3) restricted to chains starting with A (see Section

2.1)

ZA
N(β, h) =

2N∑
n=1

e−βh(2
PN

i=1 σi−N)

(d
(n)
N + n

(n+1)
N )β

, β ∈ R. (A.1)

Note that the partition function (3.3) is the sum of ZA
N(β, h) and ZB

N (β, h), where

the ZB
N (β, h) is the partition function for chains starting with the matrix B. First we

find bounds for ZA
N(β, h) and then prove a lemma which lets us apply the bounds for

ZA
N(β, h) to ZB

N (β, h) also.

Now, when we go from level N to level N + 1 we double the number of the

terms in the partition function. Note that for chains starting with the matrix A one

half of the terms come from matrix products of the form AMN−1A and the others

from products AMN−1B. It is easy to check that the corresponding traces for given

n ∈ {1, . . . , 2N} are d
(2n−1)
N+1 + n

(2n)
N+1 and d

(2n)
N+1 + n

(2n+1)
N+1 , respectively. These traces are

multiplied by an h dependent factor e−βh(2
PN+1

i=1 σi−N−1) which is simply eβh raised to

the power (#A−#B), the number of matrices A minus the number of matices B in

the particular chain. For the terms from products of the form AMN−1A, it follows on

using the definition of the Farey fractions that

e−βh(2
PN+1

i=1 σi−N−1)

(d
(2n−1)
N+1 + n

(2n)
N+1)

β
=

e−βh(2
PN

i=1 σi−N)+βh

(d
(n)
N + n

(n)
N + n

(n+1)
N )β

≤ e−βh(2
PN

i=1 σi−N)

(d
(n)
N + n

(n+1)
N )β

eβ|h|

and, similarly, for AMN−1B

e−βh(2
PN+1

i=1 σi−N−1)

(d
(2n)
N+1 + n

(2n+1)
N+1 )β

=
e−βh(2

PN
i=1 σi−N)−βh

(d
(n)
N + d

(n+1)
N + n

(n+1)
N )β

≤ e−βh(2
PN

i=1 σi−N)

(d
(n)
N + n

(n+1)
N )β

eβ|h|.
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For the lower bound we just need the AMN−1A terms

e−βh(2
PN

i=1 σi−N)+βh

(d
(n)
N + n

(n)
N + n

(n+1)
N )β

≥ e−βh(2
PN

i=1 σi−N)

(d
(n)
N + n

(n+1)
N )β

e−β|h|

2β
,

where we used the fact that n
(n)
N ≤ d

(n)
N . Thus we get for ZA

N+1(β, h) = Z
AMN−1A
N+1 (β, h)+

Z
AMN−1B
N+1 (β, h)

2−βe−β|h|ZA
N(β, h) ≤ ZA

N+1(β, h) ≤ 2eβ|h|ZA
N(β, h)

for any β ≥ 0 and h ∈ R.

Finally, we prove a lemma which allows us to bound ZB
N (β, h). Consider a (2× 2)

matrix M =
(

m1

m3

m2

m4

)
and define the operator ∼ via M̃ :=

(
m4

m2

m3

m1

)
. Then we have

the following result.

Lemma .1 Let M = AZ1Z2 . . . ZN , where Zi ∈ {A,B}, with A =
(

1
1

0
1

)
and B =

(
1
0

1
1

)
. Then M̃ = BZ̃1Z̃2 . . . Z̃N , i.e. the ∼ operator exchanges A and B.

Proof. We will use mathematical induction. It is easy to see that A = B̃ and

B = Ã. From matrix multiplication follows BM̃ =
(

m2+m4

m2

m1+m3

m1

)
and AM =

(
m1

m1+m3

m2

m2+m4

)
.

Clearly the ∼ operation is a 1-to-1 map of the set of all chains AMN onto BMN .

Furthermore, the magnetic field term in the energy of each chain changes sign under

this operation, so that the bounds just obtained for ZA
N(β, h) may be applied to

ZB
N (β, h). Therefore

2−βe−β|h| ≤ ZN+1

ZN

≤ 2eβ|h|.

Note that the proof is easily adapted to the KSC model.
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